
Question

Let Ds be the hyperbolic disc in the Poincaré disc D with hyperbolic radius
s, and let Cs be the hyperbolic circle with hyperbolic radius s that bounds
Ds. Describe the behavior of the quotient

q(s) =
length

D
(Cs)

areaD(Ds)

as s→ 0 and as s→∞.

Compare the behavior of q with the analogous quantity calculated using a
Euclidean disc and a Euclidean circle.

Answer

We know from exercise sheet 8 that lengthD(Cs) = 2π sinh(s).
To calculate areaD(Ds):
Recall that the euclidean radius of Ds is R = tanh(1
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and so
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as s→∞, q(s)→ 1.
as s→ 0+, q(s)→∞ (since numerator → 2 and denominator → 0.)

The analagous euclidean quantity is

qE(s) =
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D
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=
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s

as s→∞, qE(s)→ 0 (different from q(s)).
as s→ 0+, qE(s)→∞ (as q(s))
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