Question

Let D_{s} be the hyperbolic disc in the Poincaré disc \mathbf{D} with hyperbolic radius s, and let C_{s} be the hyperbolic circle with hyperbolic radius s that bounds D_{s}. Describe the behavior of the quotient

$$
q(s)=\frac{\operatorname{length}_{\mathbf{D}}\left(C_{s}\right)}{\operatorname{area}_{\mathbf{D}}\left(D_{s}\right)}
$$

as $s \rightarrow 0$ and as $s \rightarrow \infty$.
Compare the behavior of q with the analogous quantity calculated using a Euclidean disc and a Euclidean circle.

Answer
We know from exercise sheet 8 that length $\mathbf{D}_{\mathbf{D}}\left(\mathbf{C}_{s}\right)=2 \pi \sinh (s)$. To calculate $\operatorname{area}_{\mathbf{D}}\left(\mathbf{D}_{s}\right)$:
Recall that the euclidean radius of \mathbf{D}_{s} is $R=\tanh \left(\frac{1}{2} s\right)$, and so

$$
\begin{aligned}
\operatorname{area}_{\mathbf{D}}\left(\mathbf{D}_{s}\right) & =\int_{0}^{2 \pi} \int_{0}^{R} \frac{4}{\left(1-|z|^{2}\right)^{2}} d x d y \\
& =\int_{0}^{2 \pi} \int_{0}^{R} \frac{4 r d r d \theta}{\left(1-r^{2}\right)^{2}} \\
& =8 \pi \int_{0}^{R} \frac{r d r}{\left(1-r^{2}\right)^{2}} \\
& =\left.8 \pi \frac{1}{2}\left(1-r^{2}\right)\right|_{0} ^{R} \\
& =8 \pi\left(\frac{1}{2\left(1-R^{2}\right)}-\frac{1}{2}\right) \\
& =\frac{4 \pi}{1-R^{2}}-4 \pi \\
& =\frac{4 \pi\left(1-1+R^{2}\right)}{1-R^{2}} \\
& =\frac{4 \pi \tanh ^{2}\left(\frac{1}{2} s\right)}{1-\tanh ^{2}\left(\frac{1}{2} s\right)} \\
& =4 \pi \sinh ^{2}\left(\frac{1}{2} s\right)
\end{aligned}
$$

and so

$$
\begin{aligned}
q(s)=\frac{\operatorname{length}_{\mathbf{D}}\left(\mathrm{C}_{\mathrm{s}}\right)}{\operatorname{area}_{\mathbf{D}}\left(\mathrm{D}_{\mathrm{s}}\right)} & =\frac{2 \pi \sinh (s)}{4 \pi \sinh ^{2}\left(\frac{1}{2} s\right)} \\
& =\frac{4 \pi \sinh \left(\frac{1}{2} s\right) \cosh \left(\frac{1}{2} s\right)}{4 \pi \sinh ^{2}\left(\frac{1}{2} s\right)} \\
& =\frac{\cosh \left(\frac{1}{2} s\right)}{\sinh \left(\frac{1}{2} 2\right)} \\
& =\frac{e^{\frac{1}{2} s}+e^{\frac{-1}{2} s}}{e^{\frac{1}{2} s}-e^{\frac{-1}{2} s}} \\
& =\frac{e^{s}+1}{e^{s}-1}
\end{aligned}
$$

as $s \rightarrow \infty, q(s) \rightarrow 1$.
as $s \rightarrow 0^{+}, q(s) \rightarrow \infty$ (since numerator $\rightarrow 2$ and denominator $\rightarrow 0$.)
The analagous euclidean quantity is

$$
q_{E}(s)=\frac{\operatorname{length}_{\mathbf{D}}\left(\mathrm{C}_{\mathrm{s}}\right)}{\operatorname{area}_{\mathbf{D}}\left(\mathrm{D}_{\mathrm{s}}\right)}=\frac{2 \pi s}{\pi s^{2}}=\frac{2}{s}
$$

as $s \rightarrow \infty, q_{E}(s) \rightarrow 0$ (different from $q(s)$).
as $s \rightarrow 0^{+}, q_{E}(s) \rightarrow \infty($ as $q(s))$

