
Question

Let `0 and `1 be ultraparallel hyperbolic lines in H. Label the endpoints at
infinity of `0 as z0 and z1, and the endpoints at infinity of `1 as w0 and w1,
so that they occur in the order z0, w0, w1, and z1 moving counter-clockwise
around R. Prove that

tanh2

(

1

2
dH(`0, `1)

)

=
1

1 − [z0, w0;w1, z1]
.

Answer

By the ordering of the parts around R, there exists an element of Möb(H)
taking z0 to 0, z1 to ∞, w0 to 1, and w1 to x > 1, so that

[z0w0;w1z1] = [0, 1;x,∞] =
x− 1

0 − 1
= 1 − x

and so 1 − [z0w0;w1z1] = x.
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dH(`0`1):
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we used to determine the perpendicular bisector of `0`1:
By the euclidean pythagorean theorem:
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tanh2(a) =
sinh2(a)

cosh2(a)

=
(ea − e−a)2
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