Question

Consider the transformation $w=z^{2}$. Sketch the curves in the z-plane which map onto lines in the w-plane parallel to the real and imaginary axis.
Prove that every straight line in the w-plane is the image of a hyperbola (or pair of straight lines) in the z-plane.

Answer

$$
\begin{array}{rl}
z=x+i y & w=\alpha+i \beta \\
w=z^{2} \text { so } \alpha & =x^{2}-y^{2} \\
\beta & =2 x y
\end{array}
$$

$\beta=$ constant $\Leftrightarrow 2 x y=$ constant
$\alpha=$ constant $\Leftrightarrow x^{2}-y^{2}=$ constant

$\beta=m \alpha+c$ in w plane \Leftrightarrow $2 x y=m\left(x^{2}-y^{2}\right)+c$ $m x^{2}-m y^{2}-2 x y+c=0$
" $b^{2}-4 a c$ " $=4+4 m^{2}>0$ Therefore a hyperbola or X

