Question

Describe in geometrical terms the transformations defined by the following matrices. What effect do these transformations have on
(i) The square with vertices $(\pm 1, \pm 1)$,
(ii) the unit circle?
(a) $\left(\begin{array}{cc}4 & -6 \\ 6 & 4\end{array}\right)$
(b) $\left(\begin{array}{cc}4 & 6 \\ -6 & 4\end{array}\right)$
(c) $\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)$
(d) $\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$
(e) $\left(\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right)$

Answer

(a) $\left|\begin{array}{cc}4 & -6 \\ 6 & 4\end{array}\right|=52$

$$
\left(\begin{array}{cc}
4 & -6 \\
6 & 4
\end{array}\right)=\sqrt{52}\left(\begin{array}{cc}
\frac{4}{\sqrt{52}} & \frac{-6}{\sqrt{52}} \\
\frac{6}{\sqrt{52}} & \frac{4}{\sqrt{52}}
\end{array}\right)=52
$$

So the matrix performs a magnification by a factor $\sqrt{52}$ and a rotation anticlockwise through $\cos ^{-1} \frac{4}{\sqrt{52}}$
$\left(\begin{array}{cc}4 & -6 \\ 6 & 4\end{array}\right)\left(\begin{array}{cccc}1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1\end{array}\right)=\left(\begin{array}{cccc}-2 & 10 & -10 & 2 \\ 10 & 2 & -2 & -10\end{array}\right)$
$x^{2}+y^{2}=1 \rightarrow X^{2}+Y^{2}=52$
(b) $\left(\begin{array}{cc}4 & 6 \\ -6 & 4\end{array}\right)=\sqrt{52}\left(\begin{array}{cc}\frac{4}{\sqrt{52}} & \frac{6}{\sqrt{52}} \\ \frac{-6}{\sqrt{52}} & \frac{4}{\sqrt{52}}\end{array}\right)=52$

So the matrix performs a magnification by a factor $\sqrt{52}$ and a rotation clockwise through $\cos ^{-1} \frac{4}{\sqrt{52}}$
(c) $\binom{X}{Y}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\binom{x}{Y}=\binom{x+2 y}{2 x+4 y}$ So $\mathbf{R}^{2} \rightarrow Y=2 X$

The inverse image of $(k, 2 k)$ is the line $x+2 y=k$. For the square the extremities of the image are $(\pm 3, \pm 6)$

So the extremities are

$$
\left(\pm \frac{5}{\sqrt{5}}, \pm \frac{10}{\sqrt{5}}\right)=(\pm \sqrt{5}, \pm 2 \sqrt{5})
$$

(d) Rotation through 45° anitclockwise
(e) $\left(\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right)\left(\begin{array}{cccc}1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1\end{array}\right)=\left(\begin{array}{cccc}2 & 1 & -1 & -1 \\ 2 & 0 & 0 & -2\end{array}\right)$

Gives a magnification and shear.

$$
\begin{aligned}
& x=\frac{1}{2} X \quad y=-\frac{1}{2} X+Y \\
& x^{2}+y^{2}=1 \rightarrow \frac{1}{2} X^{2}-X Y+Y^{2}=1 \text { - ellipse. }
\end{aligned}
$$

