QUESTION

Write down the matrix A corresponding to the quadratic form $5 x^{2}+5 y^{2}+$ $2 z^{2}-2 x y$. Find its eigenvalues and the corresponding normalised eigenvectors, and write down a matrix R such that $R^{T} A R$ is diagonal with the eigenvalues of A as its diagonal entries. Show that this is so by calculating $R^{T} A$ and $\left(R^{T} A\right) R$. Hence or otherwise diagonalise the quadratic form, i.e. write it in the form $a X^{2}+b Y^{2}+c Z^{2}$ giving explicit values for a, b, c and give expressions for the new variables X, Y, Z in terms of the variables x, y, z.
ANSWER
$A=\left(\begin{array}{ccc}5 & -1 & 0 \\ -1 & 5 & 0 \\ 0 & 0 & 2\end{array}\right)$
$\operatorname{det}(A-\lambda I)=(2-\lambda)\left[(5-\lambda)^{2}-1\right]$ so $\lambda=2$ or $(5-\lambda-1)(5-\lambda+1)=0 \Rightarrow$ $\lambda=2$ or $\lambda=4$ or $\lambda=6$.
Eigenvectors:
$\lambda=2$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
3 & -1 & 0 \\
-1 & 3 & 0 \\
0 & 0 & 0
\end{array}\right) \mathbf{v}=\mathbf{0} \\
& \text { so } \left.\begin{array}{l}
3 x=y \\
x=3 y
\end{array}\right\} \Rightarrow x=y=0 z=1 \quad\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
& \lambda=4 \\
& \left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & -2
\end{array}\right) \mathbf{v}=\mathbf{0} \\
& \begin{array}{l}
\Rightarrow x=y z=0 \quad\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
1
\end{array}\right) \\
\lambda=6
\end{array} \\
& \left(\begin{array}{ccc}
-1 & -1 & 0 \\
-1 & -1 & 0 \\
0 & 0 & -4
\end{array}\right) \mathbf{v}=\mathbf{0} \\
& \Rightarrow x=y=0 \quad z=1\left(\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
1
\end{array}\right)
\end{aligned}
$$

Let $R=\left(\begin{array}{ccc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1\end{array}\right)$ so $R^{T}=R$

$$
\begin{aligned}
& R^{T} A=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
5 & -1 & 0 \\
-1 & 5 & 0 \\
0 & 0 & 2
\end{array}\right)=\left(\begin{array}{ccc}
2 \sqrt{2} & 2 \sqrt{2} & 0 \\
3 \sqrt{2} & -3 \sqrt{2} & 0 \\
0 & 0 & 2
\end{array}\right) \\
& \left(R^{T} A\right) R=\left(\begin{array}{ccc}
2 \sqrt{2} & 2 \sqrt{2} & 0 \\
3 \sqrt{2} & -3 \sqrt{2} & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
4 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 2
\end{array}\right)
\end{aligned}
$$

The quadratic form diagonalises to $4 X^{2}+6 Y^{2}+2 Z^{2}$ where $X=\frac{1}{\sqrt{2}}(x+$ y), $Y=\frac{1}{\sqrt{2}}(x-y), z=Z$.

