QUESTION

Solve the following differential equations subject to the given initial conditions.
(i) $(x+1) \frac{d y}{d x}=x+6$, where $y=3$ when $x=0$.
(ii) $x \frac{d y}{d x}+(3 x+1) y=e^{-3 x}$, where $y=e^{-3}$ when $x=1$.
(iii) $2 \frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}-3 y=0$, where $y=1$ and $\frac{d y}{d x}=3$ when $x=0$.
(iv) $\frac{d^{2} y}{d x^{2}}-10 \frac{d y}{d x}+25 y=0$, where $y=1$ and $\frac{d y}{d x}=1$ when $x=1$.

ANSWER
(i)

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{x+6}{x+1}=1+\frac{5}{x+1} \\
\Rightarrow & y=x+5 \ln |x+1|+c 3=5 \ln 1+c \text { so } c=3 \\
\Rightarrow & y=x+5 \ln |x+1|+3
\end{aligned}
$$

(ii) $\frac{d y}{d x}+\left(3+\frac{1}{x}\right) y=\frac{1}{x e^{3 x}}$

Integrating factor: $e^{\int 3+\frac{1}{x} d x}=e^{(3 x+\ln |x|)}=|x| e^{3 x}$. So for $x>0$,

$$
\begin{gathered}
\frac{d\left(x e^{3 x} y\right)}{d x}=\frac{1}{x e^{3 x}} \cdot x e^{3 x} \Rightarrow x e^{3 x} y \\
\int 1 d x \Rightarrow y=\frac{x+C}{x e^{3 x}}: e^{-3}=\frac{c+1}{e^{3}} \Rightarrow C=0
\end{gathered}
$$

so $y=\frac{1}{e^{3 x}}$
(iii) Auxiliary equation: $2 \lambda^{2}-5 \lambda-3=0$ factorises as $(2 \lambda+1)(\lambda-3)$ so $\lambda=3,-\frac{1}{2}$ with solutions $y=A e^{3 x}+B e^{-\frac{1}{2} x} .1=A+B, 3=3 A-\frac{1}{2} B$ from initial conditions so $3 \frac{1}{2} B=0 \Rightarrow B=0$ and $A=1$ giving $y=e^{3 x}$.
(iv) Auxiliary equation: $\lambda^{2}-10 \lambda+25=0$ factorises as $\left.\lambda-5\right)^{2}$ so there is a unique solution $\lambda=5 . y=(A+B x) e^{5 x}$.

$$
\begin{aligned}
& \quad \frac{d y}{d x}=B e^{5 x}+5(A+B x) e^{5 x}=(5 A+B+5 B x) e^{5 x} \\
& 1=(A+B) e^{5} \text { and } 1=(5 A+6 B) e^{5} \text { from the initial conditions so } \\
& 5=A e^{5} \text { or } A=5 e^{-5} \text { and so } B e^{5}=1-5 e^{-5} \text { i.e } B=-4 e^{-5} \text { and } \\
& y=(5-4 x) e^{5(x-1)}
\end{aligned}
$$

