QUESTION Find the vector equation of the plane Π_1 which passes through the points L = (1, 1, 0), M = (1, -2, 2) and N = (3, 0, 3). What is the equation of the plane in terms of x, y, z coordinates? A second plane Π_2 is parallel to Π_1 and passes through the point Q = (1, 1, 1). Find the equation of Π_2 in terms of x, y, z coordinates. Give the parametric equation for the line ℓ through the point Q orthogonal to Π_1 , and find the point A where it intersects the plane Π_1 . Write down the vector joining the point L to A, and verify that this is orthogonal to the line ℓ . **ANSWER** $$\mathbf{u} = L\vec{M} = \begin{pmatrix} 0 \\ -3 \\ 2 \end{pmatrix}, \ \mathbf{v} = L\vec{N} = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$$ $$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & -3 & 2 \\ 2 & -1 & 3 \end{vmatrix} = -7\mathbf{i} + 4\mathbf{j} + 6\mathbf{k} = \begin{pmatrix} -7 \\ 4 \\ 6 \end{pmatrix}$$ so the equation of $$\Pi_1$$ is $\begin{pmatrix} -7 \\ 4 \\ 6 \end{pmatrix}$. $\mathbf{w} = \begin{pmatrix} -7 \\ 4 \\ 6 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = -3$ In co-ordinates this is -7x + 4y + 6z = -3. Π_2 has equation -7x + 4y + 6z = 3. ℓ has equation (1,1,1) + t(-7,4,6) or (x,y,z) = (1-7t,1+4t,1+6t) This point lies in $\Pi_1 \Leftrightarrow -7(1-7t) + 4(1+4t) + 6(1+6t) = -3 \Leftrightarrow -7+4+6+3 = (-49-16-36)t$ i.e. $t = \frac{-6}{101}$ hence $A = \left(\frac{143}{101}, \frac{77}{101}, \frac{65}{101}\right)$. \vec{LA} is orthogonal to $\ell \Leftrightarrow \vec{LA}.(\mathbf{u} \times \mathbf{v}) = 0$ $$\vec{LA} = \left(\frac{42}{101}, -\frac{24}{101}, \frac{65}{101}\right)^T, \ \vec{LA}. \begin{pmatrix} -7\\4\\6 \end{pmatrix} = -284 - 96 + 390 = 0.$$