Question

Consider the following set of simultaneous equations

$$
\begin{array}{r}
x+y+z=0, \\
2 x-3 y-z=1, \\
2 y+z=2 .
\end{array}
$$

Find the solution by matrix inversion.
Note: If you fail to show detailed working of the matrix inversion, no marks will be awarded, even if you can write down the correct answer.

Answer
$k=0$

$$
\begin{array}{r}
x+y+z=0 \\
2 x-3 y-z=1 \\
2 y+z=2
\end{array}
$$

$\Rightarrow\left(\begin{array}{ccc}1 & 1 & 1 \\ 2 & -3 & -1 \\ 0 & 2 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)$
A. $\mathbf{x}=\mathbf{b}$

Need \mathbf{A}^{-1}

$$
\begin{aligned}
\operatorname{det} A & =1\left|\begin{array}{cc}
-3 & -1 \\
2 & 1
\end{array}\right|-1\left|\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right|+1\left|\begin{array}{cc}
2 & -3 \\
0 & 2
\end{array}\right| \\
& =-1-2+4 \\
& =1 \neq 0
\end{aligned}
$$

so \mathbf{A}^{-1} exists.
Form matrix of cofactors
cofactor of $A_{11}=+\left|\begin{array}{cc}-3 & -1 \\ 2 & 1\end{array}\right|=-1$ Following +- sign pattern
cofactor of $A_{12}=-\left|\begin{array}{cc}2 & -1 \\ 0 & 1 \\ 2 & -3\end{array}\right|=-2$
cofactor of $A_{13}=+\left|\begin{array}{cc}2 & -3 \\ 0 & 2\end{array}\right|=+4$
cofactor of $A_{21}=-\left|\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right|=+1$
cofactor of $A_{22}=+\left|\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right|=+1$
cofactor of $A_{23}=-\left|\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right|=-2$
cofactor of $A_{31}=+\left|\begin{array}{cc}1 & 1 \\ -3 & -1\end{array}\right|=+2$
cofactor of $A_{32}=-\left|\begin{array}{cc}1 & 1 \\ 2 & -1\end{array}\right|=+3$
cofactor of $A_{33}=+\left|\begin{array}{cc}1 & 1 \\ 2 & -3\end{array}\right|=-5$
Cofactor matrix $=\left(\begin{array}{ccc}-1 & -2 & 4 \\ 1 & 1 & -2 \\ 2 & 3 & 5\end{array}\right)$
Transpose $=\left(\begin{array}{ccc}-1 & 1 & 2 \\ -2 & 1 & 3 \\ 4 & -2 & -5\end{array}\right)$
$\frac{\text { Transpose }}{\operatorname{det}}=\frac{1}{1}\left(\begin{array}{ccc}-1 & 1 & 2 \\ -2 & 1 & 3 \\ 4 & -2 & -5\end{array}\right)$
Therefore
$A^{-1}=\left(\begin{array}{ccc}-1 & 1 & 2 \\ -2 & 1 & 3 \\ 4 & -2 & -5\end{array}\right)$
Therefore

$$
\begin{aligned}
\mathbf{x}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{ccc}
-1 & 1 & 2 \\
-2 & 1 & 3 \\
4 & -2 & -5
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right) \\
& =\left(\begin{array}{c}
5 \\
7 \\
-12
\end{array}\right)
\end{aligned}
$$

Therefore $x=5, y=7, z=-12$

