
Question

Consider the following set of simultaneous equations

x + y + z = 0,

2x − 3y − z = 1,

2y + z = 2.

Find the solution by matrix inversion.

Note: If you fail to show detailed working of the matrix inversion, no marks

will be awarded, even if you can write down the correct answer.

Answer

k = 0

x + y + z = 0

2x − 3y − z = 1

2y + z = 2
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so A−1 exists.

Form matrix of cofactors

cofactor of A11 = +
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cofactor of A22 = +
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Therefore x = 5, y = 7, z = −12
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