Question

Let $f_{a}(x)=x^{4}-3 a x^{2}+x+2 a^{2}$. Show that fixed points for f_{a} are created as a increases through zero, but this is not a saddle-node bifurcation. Which conditions in Theorem A fail?
Answer
$f_{a}(x)=x$ where $x^{4}-3 a x^{2}+2 a^{2}=0$ i.e. $\left(x^{2}-a\right)\left(x^{2}-2 a\right)=0$. No solutions for $a>0$; solutions $\pm a, \pm \sqrt{2} a$ for $a>0$. We have $f_{0}^{\prime}(0)=1$ (OK for saddle-node) but $\left.\frac{\partial}{\partial a} f_{a}(0)\right|_{a=0}=\left.4 a\right|_{a=0}=0$: second condition fails.

