Question

Show that $\left(f_{1}^{2}\right) "(p)=0$ for a period-doubling point of f_{a}.
Answer
$f_{a}^{2}(p)-f_{a}\left(f_{a}(p)\right)$ so $\left(f_{a}^{2}\right)^{\prime}(p)=f_{a}^{\prime}\left(f_{a}(p)\right) \cdot f_{a}{ }^{\prime}(p)$.
Then $\left(f_{a}^{2}\right)^{\prime \prime}(p)=f_{a}^{\prime \prime}\left(f_{a}(p)\right) \cdot\left(f_{a}{ }^{\prime}(p)\right)^{2}+f_{a}{ }^{\prime}\left(f_{a}(p)\right) \cdot f_{a}{ }^{\prime \prime}(p)$. But $f_{a}(p)=p$ and $f_{a}^{\prime}(p)=-1$, giving $\left(f_{a}^{2}\right)^{\prime \prime}(p)=0$.

