
Question

By applying the Period-Doubling Theorem to g2
a = [ax(1− x)]2 show that a

4-cycle is created as a increases through 1 +
√
6.

Answer If the 2-cycle is {p, q} as in question 6, then
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When a = 1 +
√
6 we have (g2
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′(p) = a2(1− 2p)(1− 2q) = −1 so we find the
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Hence the bifurcation from a 2-cycle to a 4-cycle is supercritical.
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