Question

By applying the Period-Doubling Theorem to $g_{a}^{2}=[a x(1-x)]^{2}$ show that a 4 -cycle is created as a increases through $1+\sqrt{6}$.

Answer If the 2-cycle is $\{p, q\}$ as in question 6, then

$$
\begin{aligned}
\left(g_{a}^{4}\right)^{\prime} & =g_{a}{ }^{\prime}\left(g_{a}^{3}(x)\right) g_{a}{ }^{\prime}\left(g_{a}^{2}(x)\right) g_{a}{ }^{\prime}\left(g_{a}(x)\right) g_{a}(x) \\
& =a^{4}\left(1-2 g_{a}^{3}(x)\left(1-2 g_{a}^{2}(x)\right)\left(1-2 g_{a}(x)\right)(1-2 x)\right.
\end{aligned}
$$

Now

$$
\begin{aligned}
\frac{\partial g_{a}}{\partial a_{2}}(p) & =p(1-p)=\frac{1}{a} q \\
\frac{\partial g_{a}}{\partial a_{3}}(p) & =\frac{1}{a} p+a(1-2 q) \frac{1}{a} q \\
\frac{\partial g_{a}}{\partial a}(p) & =\frac{1}{a} q+a(1-2 p)\left[\frac{1}{a} p+a(1-2 q) \frac{1}{a} q\right] .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{\partial}{\partial a}\left(g_{a}^{4}\right)^{\prime}(p) & =4 a^{3}(1-2 p)^{2}(1-2 q)^{2} \\
& -2 a^{4}\left(\frac{1}{a} q+a(1-2 p)\left[\frac{1}{a} p+a(1-2 q) \frac{1}{a} q\right]\right)(1-2 p)^{2}(1-2 q) \\
& -2 a^{4}(1-2 q)\left(\frac{1}{a} p+a(1-2 q) \frac{1}{a} q\right)(1-2 q)(1-2 p) \\
& -2 a^{4}(1-2 q)(1-2 p) \frac{1}{a} q(1-2 p)
\end{aligned}
$$

When $a=1+\sqrt{6}$ we have $\left(g_{a}^{2}\right)^{\prime}(p)=\underline{a^{2}(1-2 p)(1-2 q)=-1}$ so we find the above simplifies to

$$
\begin{aligned}
\left.\frac{\partial}{\partial a}\left(g_{a}^{4}\right)^{\prime}(p)\right|_{a=1+\sqrt{6}} & =\frac{4}{a}+2 a^{2} p(1-2 p)^{2}+2 a^{2}(1-2 q)\left(\frac{1}{a} p+(1-2 q) q\right)+2 a q(1-2 p) \\
& =\frac{4}{a}+2 a^{2}\left(p(1-2 p)^{2}+q(1-2 q)^{2}\right)+2 a(p(1-2 q)+q(1-2 p))
\end{aligned}
$$

$\begin{aligned} \text { Now using } p+q=\frac{1}{a}+1 & =\frac{4}{a}+2 a^{2} b\left(1-\frac{8}{a^{2}}\right)+2 a b(1-\text { say }) \text { and } p q=\frac{b}{a} \\ & =\frac{4}{a}+2 b\left(a^{2}+a-12\right)>0\end{aligned}$
because $a_{a}^{2}-12=(1+\sqrt{6})^{2}+(1+\sqrt{6})-12=3 \sqrt{6}-4>0$.
Hence the bifurcation from a 2 -cycle to a 4 -cycle is supercritical.

