Question

Find the fixed points and a period 2 orbit for $f(x)=2 x^{2}-5 x$. Decide in each case if they are attracting or repelling.

Answer

$f(x)=2 x^{2}-5 x$. Fixed points where $2 x^{2}-5 x=x: \underline{x}=0,3 . f^{2}(x)=2\left(2 x^{2}-\right.$ $5 x)^{2}-5\left(2 x^{2}-5 x\right)=\left(2 x^{2}-5 x\right)\left(2\left(2 x^{2}-5 x\right)-5\right)=x(2 x-5)\left(4 x^{2}-10 x-5\right)$. Fixed points of f^{2} where $x(2 x-5)\left(4 x^{2}-10 x-5\right)=x$, i.e. $x^{3}-5 x^{2}+5 x+3=0$. We know $x=3$ is a solution, so $(x-3)$ is a factor of LHS:

$$
x^{3}-5 x^{2}+5 x+3=(x-3)\left(x^{2}-2 x-1\right)=0
$$

giving $x=1 \pm \sqrt{2}$.
$\left(\right.$ Check $f(1 \pm \sqrt{2})=2(1 \pm \sqrt{2})^{2}-5(1 \pm \sqrt{2})=2(3 \pm 2 \sqrt{2})-5(1 \pm \sqrt{2})=$ $(1 \pm \sqrt{2})$.)
ALSO: $f^{\prime}(x)=4 x-5$ so fixed points repelling; $f^{\prime}(1+\sqrt{2}) f^{\prime}(1-\sqrt{2})=-31$ so 2-cycle repelling too.

