Question

Show that $f: \mathbf{R} \longrightarrow \mathbf{R}: x+x^{3}$ has a repelling fixed point at $x=0$ (although $f^{\prime}(0)=1$). What about $x \mapsto x-x^{3}$? What is the behaviour of $x \mapsto-x+x^{3}, x \mapsto-x-x^{3}$ near the origin?

Answer
$f(x)=x+x^{3} \Rightarrow f(x)>x$ or $<x$ according as $x>0$ or <0. Thus $f^{n}(x)$ tends monotonically away from 0 , and in fact $f^{n}(x) \rightarrow \pm \infty$ (else $f^{n}(x) \rightarrow l$ for some finite l, which then has $f(l)=l$: not the case for $l \neq 0)$.
$f(x)=x-x^{3}$: attracting fixed pt. at 0 , since $0<x<1 \Rightarrow 0<f(x)<x<1$ $(-1<x<0 \Rightarrow-1<x<f(x)<0)$ so $f(x) \rightarrow$ limit m which has $f(m)=m$ so $m=0$.
$\underline{f(x)=-x+x^{3}:}$

$$
\begin{aligned}
\text { here } 0<x<1 & \Rightarrow-1<-x<f(x)<0 \\
\text { and }-1<x<0 & \Rightarrow 0<f(x)<-x<1
\end{aligned}
$$

so $|x|<1 \Rightarrow|f(x)|<|x|$ so $\left|f^{n}(x)\right| \rightarrow l$ and $|f(l)|=|l|$ so $l=0$: attracting. Likewise $f(x)=-x-x^{3}$: origin is repelling. (Last 2 cases with oscillation.)

