Question

Show that $f: \mathbf{R} \longrightarrow \mathbf{R}: x + x^3$ has a repelling fixed point at x = 0(although f'(0) = 1). What about $x \mapsto x - x^3$? What is the behaviour of $x \mapsto -x + x^3$, $x \mapsto -x - x^3$ near the origin?

Answer

 $f(x) = x + x^3 \Rightarrow f(x) > x$ or < x according as x > 0 or < 0. Thus $f^n(x)$ tends monotonically away from 0, and in fact $f^n(x) \to \pm \infty$ (else $f^n(x) \to l$ for some finite l, which then has f(l) = l: not the case for $l \neq 0$). $f(x) = x - x^3$: attracting fixed pt. at 0, since $0 < x < 1 \Rightarrow 0 < f(x) < x < 1$ $\frac{1}{(-1 < x < 0)}$ \Rightarrow -1 < x < f(x) < 0) so $f(x) \rightarrow limit\ m$ which has f(m) = mso m = 0.

$$\underline{f(x) = -x + x^3}$$
:

here
$$0 < x < 1 \implies -1 < -x < f(x) < 0$$

and $-1 < x < 0 \implies 0 < f(x) < -x < 1$

so $|x| < 1 \Rightarrow |f(x)| < |x|$ so $|f^n(x)| \to l$ and |f(l)| = |l| so l = 0: attracting. Likewise $f(x) = -x - x^3$: origin is repelling. (Last 2 cases with oscillation.)