Question

Let $f(x)=\frac{1}{2}\left(3 x-x^{3}\right)$. Show that the 2-cycle $\{ \pm \sqrt{5}\}$ is repelling. Solve the inequality $|f(x)|>|x|$ and also $|f(x)|<|x|$ to show there are no periodic points apart from $\{ \pm \sqrt{5}\}$ and the fixed points $\{0, \pm 1\}$.
Answer
$f^{\prime}(x)=\frac{3}{2}\left(1-x^{2}\right)$, so $f^{\prime}(\pm \sqrt{5})=\frac{3}{2}(-4)=6$.
Hence $\left(f^{2}\right)^{\prime}(\sqrt{5})=f(\sqrt{5})(-\sqrt{5})=36>1$ so the 2 -cycle $\{\sqrt{5},-\sqrt{5}\}$ is repelling.
From the graph of f (or considering $f(x)>x, f(x)<-x$ etc.) we see that $|f(x)|>|x|$ when $0<|x|<1$ or $|x|>\sqrt{5}$.

Graphical iteration shows $x \mapsto 1$ or -1 in the first case, and $x \mapsto \infty$ in the second. If $1<|x|<\sqrt{5}$ then $|f(x)|<|x|$, so either eventually $\left|f^{m}(x)\right|<1$ (so $f^{n}(x) \rightarrow 1$ or -1) or $\left|f^{m}(x)\right| \rightarrow$ limit $l \geq 1$: in this case $|f(l)|=|l|$ so again $l \pm 1$. So no more periodic orbits.

