QUESTION

Find a solution of $x^{2}+1 \equiv 0 \bmod 17$.
ANSWER
The alert will spot ± 4 as roots immediately! if you didn't notice, then as $17 \equiv 1 \bmod 4$, we can appeal to the method of th.4.6 to deduce that the roots are $\pm\left(\frac{(p-1)}{2}\right)$! where $p=17$. Thus the roots are $\pm(8!) \bmod 17$.
$8!=8.7 \cdot 6 \cdot 5 \cdot 4.3 \cdot 2=56.30 .24 \equiv 5 .(-4) .7 \equiv 5 .(-28) \equiv 5.6 \equiv 30 \equiv-4 \bmod$ 17 , showing that the roots are $\pm 4 \bmod 17$, as spotted!

