QUESTION

Find a solution of $x^2 + 1 \equiv 0 \mod 17$.

ANSWER

The alert will spot ± 4 as roots immediately! if you didn't notice, then as $17 \equiv 1 \mod 4$, we can appeal to the method of th.4.6 to deduce that the roots are $\pm \left(\frac{(p-1)}{2}\right)$! where p=17. Thus the roots are $\pm (8!) \mod 17$. $8! = 8.7.6.5.4.3.2 = 56.30.24 \equiv 5.(-4).7 \equiv 5.(-28) \equiv 5.6 \equiv 30 \equiv -4 \mod 17$, showing that the roots are $\pm 4 \mod 17$, as spotted!