QUESTION

Let $n = q_1 q_2 \dots q_k$, where the q_i are distinct primes and k > 1. Suppose that for each i, $q_i - 1|n - 1$. Show that n is a Carmichael number.

Hence find a Carmichael number of the form 7.23.q where q is an odd prime. ANSWER

 $n=q_1q_2\ldots q_k,\ q_i$ distinct primes, and k>1. Thus, as k>1, n is composite. Suppose $\gcd(b,n)=1$. Thus $\gcd b,q_i)=1$ for each i. Hence $b^{p_i-1}\equiv 1$ mod q_i by Fermat's Little Theorem. But $q_i-1|n-1$, say $(q_i-1)s=(n-1)$ for some s. Thus $b^{n-1}=(b^{q_i-1})^s\equiv 1^1\equiv 1$ mod q_i . Thus $q_i|b^{n-1}-1$, and this is true for each i, so we get $q_1q_1\ldots q_k|b^{n-1}-1$ by cor.1.7. But $n=q_1q_2\ldots q_k$, so $n|b^{n-1}-1$ and n=1 mod n=1. Thus n=1 is a Carmichael number as required. Suppose q is an odd prime q=1, 23. By the above proof, n=1, 23. q will be a Carmichael number if each of n=1.

Consider the equation n=7.23.q modulo 6. Since 6|n-1, we have $n\equiv 1 \mod 6$, and so $\equiv 1.-1.q \mod 6$, giving $q\equiv -1 \mod 6$. Similarly, reducing the equation $n=7.23.q \mod 22$, we get $1\equiv 7.1.q \mod 22$, or, on multiplying by $3, 3\equiv -1.q \mod 22$. Thus $q\equiv -3 \mod 22$. Finally, reducing the equation $n=7.23.q \mod (q-1)$, we get $1\equiv 7.23.1 \mod q-1$, ei.e. $160\equiv 0 \mod (q-1)$, so that q-1 divides 160. To find a prime satisfying all three requirements, we may start listing positive integers congruent to $-3 \mod 22$, checking each in turn to see of they satisfy the other two requirements, $q\equiv -1 \mod 6$, and q-1 divides 160. Our process either produces a positive integer satisfying our requirements, or leads to numbers larger than 160, so that we could conclude that no such integer q existed. In any case the process will terminate. We check q=19m which fails, then q=41, which is prime and satisfies all our conditions, so 7.23.41 is a suitable Carmichael number.