QUESTION

Let $n=q_{1} q_{2} \ldots q_{k}$, where the q_{i} are distinct primes and $k>1$. Suppose that for each $i, q_{i}-1 \mid n-1$. Show that n is a Carmichael number.
Hence find a Carmichael number of the form 7.23.q where q is an odd prime. ANSWER
$n=q_{1} q_{2} \ldots q_{k}, q_{i}$ distinct primes, and $k>1$. Thus, as $k>1, n$ is composite. Suppose $\operatorname{gcd}(b, n)=1$. Thus $\left.\operatorname{gcd} b, q_{i}\right)=1$ for each i. Hence $b^{p_{i}-1} \equiv 1 \bmod$ q_{i} by Fermat's Little Theorem. But $q_{i}-1 \mid n-1$, say $\left(q_{i}-1\right) s=(n-1)$ for some s. Thus $b^{n-1}=\left(b^{q_{i}-1}\right)^{s} \equiv 1^{1} \equiv 1 \bmod q_{i}$. Thus $q_{i} \mid b^{n-1}-1$, and this is true for each i, so we get $q_{1} q_{1} \ldots q_{k} \mid b^{n-1}-1$ by cor.1.7. Butn $=q_{1} q_{2} \ldots q_{k}$, so $n \mid b^{n-1}-1$ and $b^{n-1} \equiv 1 \bmod n$. Thus n is a Carmichael number as required. Suppose q is an odd prime $\neq 7,23$. By the above proof, $n=7.23 . q$ will be a Carmichael number if each of $6,22, q-1$ divides $n-1$.
Consider the equation $n=7.23 . q$ modulo 6 . Since $6 \mid n-1$, we have $n \equiv 1$ $\bmod 6$, and so $\equiv 1 .-1 . q \bmod 6$, giving $q \equiv-1 \bmod 6$. Similarly, reducing the equation $n=7.23 . q \bmod 22$, we get $1 \equiv 7.1 . q \bmod 22$, or, on multiplying by $3,3 \equiv-1 . q \bmod 22$. Thus $q \equiv-3 \bmod 22$. Finally, reducing the equation $n=7.23 . q \bmod (q-1)$, we get $1 \equiv 7.23 .1 \bmod q-1$, ei.e. $160 \equiv 0 \bmod (q-1)$, so that $q-1$ divides 160 . To find a prime satisfying all three requirements, we may start listing positive integers congruent to $-3 \bmod 22$, checking each in turn to see of they satisfy the other two requirements, $q \equiv-1 \bmod 6$, and $q-1$ divides 160 . Our process either produces a positive integer satisfying our requirements, or leads to numbers larger than 160, so that we could conclude that no such integer q existed. In any case the process will terminate. We check $q=19 \mathrm{~m}$ which fails, then $q=41$, which is prime and satisfies all our conditions, so 7.23 .41 is a suitable Carmichael number.

