Question

In the Gambler's ruin problem, changing the stakes from 1 unit to $\frac{1}{2}$ unit is equivalent to doubling the initial capitals. What effect does this have on the game?

Answer

In the gambler's ruin problem, to investigate the effect of doubling the initial capital.

(i)
$$p = q$$
: $q_z = 1 - \frac{z}{a}$

So if z is replaced by 2z and a by $2a q_z$ is unchanged.

$$E_z = z(a-z)$$
, so if $z \to 2z$ and $a \to 2a$

$$E_{2z} = 2z(2a - 2z) = 4E_z$$

(ii)
$$p \neq q$$
: $q_z = \frac{\left(\frac{q}{p}\right)^z - \left(\frac{q}{p}\right)^a}{1 - \left(\frac{q}{p}\right)^a}$

$$E_z = \frac{z}{q-p} - \frac{a}{q-p} \left(\frac{1 - \left(\frac{q}{p}\right)^z}{1 - \left(\frac{q}{p}\right)^a} \right)$$

Replacing z by 2z and a by 2a

$$\begin{array}{ll} q_z & \rightarrow & \frac{\left(\frac{q}{p}\right)^{2z} - \left(\frac{q}{p}\right)^{2a}}{1 - \left(\frac{q}{p}\right)^{2a}} = \frac{\left(\frac{q}{p}\right)^z - \left(\frac{q}{p}\right)^a}{1 - \left(\frac{q}{p}\right)^a} \cdot \frac{\left(\frac{q}{p}\right)^z + \left(\frac{q}{p}\right)^a}{1 + \left(\frac{q}{p}\right)^a} \\ & = & q_z \cdot K \end{array}$$

Where K > 1 if q > p and K < 1 if q < p.

or:

$$q_z o rac{\left[\left(rac{q}{p}
ight)^2\right]^z - \left[\left(rac{q}{p}
ight)^2\right]^a}{1 - \left[\left(rac{q}{p}
ight)^2\right]^a}$$

So the game is "equivalent "to the original with the odds changed from p:q to $p^2:q^2$ with draws allowed since $p^2+q^2<1$

$$E_z \to \frac{2z}{q-p} - \frac{2a}{q-p} \left(\frac{1 - \left(\frac{q}{p}\right)^{2z}}{1 - \left(\frac{q}{p}\right)^{2a}} \right)$$