Question

A population consists of b individuals. During a time interval $(t, t+\delta t]$ each individual in the population has, independently of all the other individuals and of what happened on $[0, t]$, a probability $\mu \delta t+o(\delta t)$ of dying. Thus the population decreases from b to 0 . Let $X(t)$ be the size of the population after time t and $p_{n}(t)$ denote the probability that $X(t)=n(n=0,1, \ldots, b)$. Show that:
(i) $P\{X(t+\delta t)=n-1 \mid X(t)=n\}=n \mu \delta t+o(\delta t)$, and

$$
P\{X(t+\delta t)=n \mid X(t)=n\}=1-n \mu \delta t+o(\delta t) \text { as } \delta t \rightarrow 0
$$

(ii) $p_{b}^{\prime}(t)=-b \mu p_{b}(t)$.
(iii) $p_{n}^{\prime}(t)=-p_{n}(t) n \mu+p_{n+1}(t)(n+1) \mu$, for $n=0,1, \ldots, b-1$.
(iv) the generating function, $G(z, t)$, of $X(t)$ satisfies the differential equation

$$
\frac{\partial G}{\partial t}=\mu(1-z) \frac{\partial G}{\partial z}
$$

(v) $G(z, t)=e^{-\mu t b}\left(z+e^{\mu t}-1\right)^{b}$.

Hence find the distribution of $X(t)$ and comment on whether or not this result is surprising. The process $\{X(t) ; t \geq 0\}$ is called a linear death process.

Answer

(i) $P(X(t+\delta t)=n-1 \mid X(t)=n)=P$ (only 1 out of n individuals dies)

$$
\begin{aligned}
= & n[\mu \delta t+o(\delta t)][1-\mu \delta t+o(\delta t)]^{n-1} \\
= & n \mu \delta t+o(\delta t) \quad \text { as } \delta t \rightarrow 0 \\
& {[P(X(t+\delta t)=n \mid X(t)=n)=P(\text { no individual dies })] } \\
= & {[1-\mu \delta t+o(\delta t)]^{n}=1-n \mu \delta t+o(\delta t) \quad \text { as } \delta t \rightarrow 0 }
\end{aligned}
$$

(ii) $P_{b}(t+\delta t)=P(X(t)=b$ and no individual dies in $(t, t+\delta t])$
$=p_{b}(t)[1-b \mu \delta t+o(\delta t)]$ by independence (Markov property)
Thus $P_{b}^{\prime}(t)=-b \mu P_{b}(t)$
(iii) for $n=0,1, \ldots, b-1$

$$
\begin{aligned}
p_{n}(t+\delta t)= & P(X(t)=n \text { and no deaths in }(t, t+\delta t]) \\
& +P(X(t)=n+1 \text { and } 1 \text { death in }(t, t+\delta t]) \\
& +P(X(t)>n+1 \text { and }>1 \text { death in }(t, t+\delta t]) \\
= & p_{n}(y)[1-n \mu \delta t+o(\delta t)] \\
& +p_{n+1}(t)[(n+1) \mu \delta t+o(\delta t)]+o(\delta t)
\end{aligned}
$$

Thus $p_{n}^{\prime}(t)=-n \mu p_{n}(t)+(n+1) \mu p_{n+1}(t)$
(iv) $G(z, t)=\sum_{n-0}^{\infty} p_{n}(t) z^{n}$

$$
\begin{aligned}
\frac{\partial G}{\partial t} & =\sum_{n=0}^{\infty} p_{n}^{\prime}(t) z^{n} \\
& =\sum_{n=0}^{b-1}-n \mu p_{n}(t) z^{n}+\sum_{n=0}^{b-1}(n+1) \mu p_{n+1}(t) z^{n}-b \mu p_{b}(t) z^{b} \\
& =-\sum_{n=1}^{b} n \mu p_{n}(t) z^{n}+\sum_{n=1}^{b} n \mu p_{n}(t) z^{n-1} \\
& =\mu(1-z) \frac{\partial G}{\partial z}
\end{aligned}
$$

(v) Let $G(z, t)=e^{-\mu t b}\left(z+e^{\mu t}-1\right)^{b}$

$$
\begin{aligned}
\frac{\partial G}{\partial t} & =-\mu b e^{-\mu t b}\left(z+e^{\mu t}-1\right)^{b}+e^{-\mu t b} b\left(z+e^{\mu t}-1\right)^{b-1} \mu e^{\mu t} \\
& =\mu b e^{-\mu t b}\left(z+e^{\mu t}-1\right)^{b-1}\left(e^{\mu t}-\left(z+e^{\mu t}-1\right)\right) \\
& =\mu(1-z) b e^{-\mu t b}\left(z+e^{\mu t}-1\right)^{b-1} \\
& =\mu(1-z) \frac{\partial G}{\partial z}
\end{aligned}
$$

Now $p_{b}(0)=1$ and $p_{n}(0)=0$ for $n \neq b$ so $G(z, 0)$ should be z^{b}, which is the case.
To find $p_{n}(t)$ we need to expand $G(z, t)$ as a polynomial in z. The coefficient of z^{n} is

$$
\begin{aligned}
p_{n}(t) & =\binom{b}{n} e^{-\mu t b}\left(e^{\mu t}-1\right)^{b-n} \\
& =\binom{b}{n} e^{-\mu t n}\left(1-e^{\mu t}\right)^{b-n}
\end{aligned}
$$

So $X(t) \sim B\left(b, e^{-\mu t}\right)$ - binomial
$G(z, t)=\left(e^{-\mu t} z+\left(1-e^{-\mu t}\right)\right)^{b}-$ binomial p.g.f.
Each of the b members of the population has a probability $e^{-\mu t}$ of surviving longer than time t, independently of the others.
So we have a binomial situation, with survival being a Bernouilli trial.

