Question

If $N_{1}(t)$ and $N_{2}(t), t \geq 0$, are two independent Poisson processes with rates λ_{1} and λ_{2} respectively, obtain an expression for

$$
P\left(N_{1}(t)=n_{1} \mid N_{1}(t)+N_{2}(t)=n\right),
$$

where $n_{1} \leq n$, and comment on your result.

Answer

$P\left(N_{1}(t)=n_{1} \mid N_{1}(t)+N_{2}(t)=n\right)$

$$
\begin{aligned}
& =\frac{P\left(N_{1}(t)=n_{1} \text { and } N_{2}(t)=n-n_{1}\right)}{P\left(N_{1}(t)+N_{2}(t)=n\right)} \\
& =\frac{P\left(N_{1}(t)=n_{1}\right) \times P\left(N_{2}(t)=n-n_{1}\right)}{P\left(N_{1}(t)+N_{2}(t)=n\right)}
\end{aligned}
$$

(N_{1}, N_{2} are independent)
$=\frac{\frac{e^{-\lambda_{1} t}\left(\lambda_{1} t\right)^{n_{1}}}{n_{1}!} \cdot \frac{e^{-\lambda_{2} t}\left(\lambda_{2} t\right)^{n-n_{1}}}{\left.n-n_{1}\right)!}}{\frac{e^{-\left(\lambda_{1}+\lambda_{2}\right) t}\left(\lambda_{1}+\lambda_{2}\right)^{n} t^{n}}{n!}}$
($N_{1}+N_{2}$ is Poisson with rate $\lambda_{1}+\lambda_{2}$)
$=\frac{n!}{n_{1}!\left(n-n_{1}\right)!}\left(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)^{n_{1}}\left(\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}\right)^{n-n_{1}}$
This is the binomial probability of n_{1} successes in n trials, the probability of success being $\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}$.
A Bernoulli trial is an event in the combined process, and a success occurs if the event is from the first process N_{1}.

