## Question

Suppose events occur in a Possion process with rate $\lambda$.
(i) Find the conditional probability that there are $m$ events in the first $s$ units of time, given that there are $n$ events in the first $t$ units of time, where $0 \leq m \leq n$ and $0 \leq s \leq t$.
(ii) If $N(t)$ denotes the number of events in $(0, t]$ and $T$ denotes the time until the first event, find $P\{T \leq s \mid N(t)=n\}$ for $0 \leq s \leq t$ and $n$ a positive integer.

## Answer

(i) $P(N(s)=m \mid N(t)=n)$

$$
\begin{aligned}
& =\frac{P(N(s)=m \text { and } N(t)=n)}{P(N(t)=n)} \\
& =\frac{P(N(0, s)=m) \times P(N(s, t)=n-m)}{P(N(t)=n)}
\end{aligned}
$$

since no. of events in $(0, s]$ and $(s, t]$ are independent.
$=\frac{P(N(s)=m) \times P(N(t-s)=n-m)}{P(N(t)=n)}$
$=\frac{e^{-\lambda s}(\lambda s)^{m}}{m!} \times \frac{e^{-\lambda(t-s)}(\lambda(t-s))^{n-m}}{(n-m)!} \times \frac{n!}{e^{-\lambda t}(\lambda t)^{n}}$
$=\frac{n!}{m!(n-m)!}\left(\frac{s}{t}\right)^{m}\left(1-\frac{s}{t}\right)^{n-m}$
(note that this is a binomial probability)
(ii) $T \leq s$ is equivalent to $N(s) \geq 1$

$$
\begin{aligned}
P(T \leq s \mid N(t)=n) & =\sum_{m=1}^{n} P(N(s)=m \mid N(t)=n) \\
& =\sum_{m=1}^{n}\binom{n}{m}\left(\frac{s}{t}\right)^{m}\left(1-\frac{s}{t}\right)^{n-m} \text { by }(\mathrm{i}) \\
& =1-\left(1-\frac{s}{t}\right)^{n}
\end{aligned}
$$

