## Question

A transistor in a machine fails has to be replaced on average twice a week according to a Poisson process. Replacement transistors are bought annually and kept in store for use during the year. How many transistors should be bought to ensure only a $5 \%$ chance of running out of replacement during the year?

## Answer

Let $N(t)$ be the number of breakdowns in $t$ weeks. This has a Poisson distribution with parameter $2 t$.
We want to buy $n$ components, where

$$
P(N(52)>n) \leq 0.05
$$

$N(52) \sim P(104) \approx N(104,104)\left(=N_{p}\right)$
$P\left(N_{p}>n\right)=P\left(Z>\frac{n-104}{\sqrt{104}}\right) \leq 0.05$
so $\frac{n-104}{\sqrt{104}} \geq 1.645 \quad n \geq 121$

