Question

In the branching chain obtained when considering the disappearance of family lines suppose that the number of male offspring of any male individual has a binomial distribution with $n=10$ and $p=\frac{1}{4}$, independently of the number of offspring of any other male. Find the 1-step transition probability $p_{j k}$ for the total number of males in a generation.

Answer

Let Z_{i} be the number of male children produced by the i-th male in a generation.
Then $Z_{i} \sim B\left(10, \frac{1}{4}\right)$
If in generation m there are j males then the number of males in generation $m+1$ is $X_{m+1}=Z_{1}+\ldots+Z_{j}$
So X_{m+1} is a sum of j i.i.d. binomial r.v.'s and so $X_{m+1} \sim B\left(10 j, \frac{1}{4}\right)$ so $p_{j k}=\left\{\begin{array}{cc}\binom{10 j}{k}\left(\frac{1}{4}\right)^{k}\left(\frac{3}{4}\right)^{10 j-k} & \text { if } k \leq 10 j \\ 0 & \text { otherwise }\end{array}\right.$

