Question

The Bernoulli-Laplace model of diffusion describes the flow of two incom-
pressible liquids between two containers. It may be described in terms of
d white and d black balls distributed between two boxes so that each box
contains d balls. At each independent trial one ball is drawn from each box
at random and placed in the opposite box so that each box always contains
d balls. Suppose X,, denotes the number of white balls in box 1 after the
n-th trial. Show that {X,} (n =1,2,...) forms a Markov chain and find
the 1-step transition probabilities. Show that the stationary distribution for
this Markov chain is

where

Answer

X, has possible states 0,1,2,...,d.

P(X,4+1 = k) depends only on the number of balls in each box box before
the (n + 1)-th trial i.e. by the value X,,, so we have a Markov chain.
Suppose X,, = j
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The possible outcomes from the next trial are:
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(i) W from 1 and W from 2 with probability (%) : (Tj> giving X, 11 =j

(ii) W from 1 and B from 2 with probability (f_j) . <%> giving

Xpp1=7—1

(iii) B from 1 and W from 2 with probability (d;j ) - (d;j ) giving

Xn+1:j+1
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(iv) B from 1 and B from 2 with probability (—j> . (é) giving X,,11 = J
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With special cases: -
j = 0: only (iii) is possible, with probability 1.
j =d: only (ii) is possible, with probability 1.
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The stationary distribution m = (7, 71, 7o, . . ., mg) satisfies 7P = , so
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and for 7 # 0 or d,
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We proceed by induction

e = () (oo () a) (45
- () (@)

- (d—j+cf>!(j—1>!> <d_§+1>2

2

Now m = d?mg = 0
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Since Z 7; = 1 we must have



