
Question
The Bernoulli-Laplace model of diffusion describes the flow of two incom-
pressible liquids between two containers. It may be described in terms of
d white and d black balls distributed between two boxes so that each box
contains d balls. At each independent trial one ball is drawn from each box
at random and placed in the opposite box so that each box always contains
d balls. Suppose Xn denotes the number of white balls in box 1 after the
n-th trial. Show that {Xn} (n = 1, 2, . . .) forms a Markov chain and find
the 1-step transition probabilities. Show that the stationary distribution for
this Markov chain is
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Answer
Xn has possible states 0, 1, 2, . . . , d.
P (Xn+1 = k) depends only on the number of balls in each box box before
the (n+ 1)-th trial i.e. by the value Xn, so we have a Markov chain.
Suppose Xn = j
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The possible outcomes from the next trial are:
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(iv) B from 1 and B from 2 with probability
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pj,k = 0 if k 6= j − 1, j, j + 1
With special cases: -
j = 0 : only (iii) is possible, with probability 1.
j = d : only (ii) is possible, with probability 1.
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The stationary distribution π = (π0, π1, π2, . . . , πd) satisfies πP = π, so
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We proceed by induction
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