Question

Classify as transient, null-recurrent or positive recurrent the states of the Markov chains with the following transition probability matrices:
(a)

$$
\begin{aligned}
& P=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right), \\
& P=\left(\begin{array}{llll}
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Answer

(i) Clearly from symmetry each state is of the same type. Return to state 1 may be achieved by two sets of routes:

So $f_{11}=2\left(\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{4}+\ldots\right)=1$
The mean recurrence time is given by

$$
\begin{aligned}
\mu_{1} & =1 \cdot 0+2 \cdot 2 \cdot\left(\frac{1}{2}\right)^{2}+3 \cdot 2 \cdot\left(\frac{1}{2}\right)^{3}+4 \cdot 2 \cdot\left(\frac{1}{2}\right)^{4}+\ldots \\
& =2 \cdot \frac{1}{2}+3 \cdot\left(\frac{1}{2}\right)^{2}+4 \cdot\left(\frac{1}{2}\right)^{3}+\ldots
\end{aligned}
$$

Note that $\frac{1}{2} \mu_{1}=2 \cdot\left(\frac{1}{2}\right)^{2}+3 \cdot\left(\frac{1}{2}\right)^{3}+\ldots$
so $\mu_{1}-\frac{1}{2} \mu_{1}=1+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\ldots=\frac{3}{2}$ so $\mu_{1}=3$
Thus state 1 is positive recurrent and similarly states 2 and 3 are positive recurrent with $\mu=3$
(ii) Transition diagram

There are two return routes $1 \rightarrow 1$, namely $1 \rightarrow 3 \rightarrow 2 \rightarrow 1$ and $1 \rightarrow 4 \rightarrow 2 \rightarrow 1$.
So $f_{11}=\frac{1}{2} \cdot 1 \cdot 1+\frac{1}{2} \cdot 1 \cdot 1=1$
The recurrence time for each rout is 3 so $\mu_{1}=3$
So $f_{22}=\underbrace{1 \cdot \frac{1}{2} \cdot 1}+\underbrace{1 \cdot \frac{1}{2} \cdot 1}=1 \quad$ Again $\mu_{2}=3$
So $f_{33}=\underbrace{1 \cdot 1 \cdot \frac{1}{2}}_{3-2-1-3}+\underbrace{1 \cdot 1 \cdot \frac{1}{2} \cdot 1 \cdot 1 \cdot \frac{1}{2}}_{3-2-1-4-2-1-3}+\underbrace{\frac{1^{3}}{2}+\frac{1^{4}}{2}+\ldots}_{1-4-2 \text { cycle }}=1$
$\mu_{3}=3 \cdot \frac{1}{2}+6 \cdot \frac{1}{2}^{2}+9 \cdot \frac{1}{2}^{3}+\ldots 3\left[\frac{1}{2}+2 \cdot \frac{1}{2}^{2}+3 \cdot \frac{1}{2}^{3}+\ldots\right]=6$
By symmetry $f_{44}=1$ and $\mu_{4}=6$

