Question

A psychologist makes the following assumptions concerning the behaviour of mice subjected to a particular feeding schedule. For any particular trial 80% of the mice that went right in the previous experiment will go right in this trial, and 60% of those mice that went left in the previous experiment will go right in this trial. If 50% went right in the first trial, what would he predict for

- (a) the second trial?
- (b) the third trial?
- (c) the thousandth trial?

Answer

The two states are right(R) and left(L)

Transition matrix
$$P = \begin{pmatrix} R & L \\ R & 0.8 & 0.2 \\ L & 0.6 & 0.4 \end{pmatrix}$$

Initial Distribution $\mathbf{p}_0 = (0.5, 0.5)$

(i)
$$\mathbf{p}_1 = \mathbf{p}_0 P = (0.5, 0.5) \begin{pmatrix} 0.8 & 0.2 \\ 0.6 & 0.4 \end{pmatrix} = (0.7, 0.3)$$

We predict that 70 % go right and 30% go left.

(ii)
$$\mathbf{p}_2 = \mathbf{p}_1 P = (0.7, 0.3) P = (0.74, 0.26)$$

(iii) Now provided that |p+q-1| < 1,

$$P^{n} \rightarrow \frac{1}{2-p-q} \begin{pmatrix} 1-q & 1-p \\ 1-q & 1-p \end{pmatrix}$$
$$= \frac{1}{2-.8-.4} \begin{pmatrix} 0.6 & 0.2 \\ 0.6 & 0.2 \end{pmatrix}$$

So
$$\mathbf{p}_0 P^n \to \frac{1}{0.8} (0.5, 0.5) \begin{pmatrix} 0.6 & 0.2 \\ 0.6 & 0.2 \end{pmatrix} = (0.75, 0.25)$$

So 75% go right for n large.