Question

A psychologist makes the following assumptions concerning the behaviour of mice subjected to a particular feeding schedule. For any particular trial 80% of the mice that went right in the previous experiment will go right in this trial, and 60% of those mice that went left in the previous experiment will go right in this trial. If 50% went right in the first trial, what would he predict for
(a) the second trial?
(b) the third trial?
(c) the thousandth trial?

Answer

The two states are $\operatorname{right}(R)$ and left (L)

$$
R \quad L
$$

Transition matrix $P=\begin{aligned} & R \\ & L\end{aligned}\left(\begin{array}{ll}0.8 & 0.2 \\ 0.6 & 0.4\end{array}\right)$
Initial Distribution $\mathbf{p}_{0}=(0.5,0.5)$
(i) $\mathbf{p}_{1}=\mathbf{p}_{0} P=(0.5,0.5)\left(\begin{array}{cc}0.8 & 0.2 \\ 0.6 & 0.4\end{array}\right)=(0.7,0.3)$

We predict that 70% go right and 30% go left.
(ii) $\mathbf{p}_{2}=\mathbf{p}_{1} P=(0.7,0.3) P=(0.74,0.26)$
(iii) Now provided that $|p+q-1|<1$,

$$
\begin{aligned}
P^{n} & \rightarrow \frac{1}{2-p-q}\left(\begin{array}{ll}
1-q & 1-p \\
1-q & 1-p
\end{array}\right) \\
& =\frac{1}{2-.8-.4}\left(\begin{array}{ll}
0.6 & 0.2 \\
0.6 & 0.2
\end{array}\right)
\end{aligned}
$$

So $\mathbf{p}_{0} P^{n} \rightarrow \frac{1}{0.8}(0.5,0.5)\left(\begin{array}{ll}0.6 & 0.2 \\ 0.6 & 0.2\end{array}\right)=(0.75,0.25)$
So 75% go right for n large.

