## Question

Consider the Markov chain having state space $\{0,1,2\}$ and transition probability matrix

$$
P=\begin{aligned}
& 0 \\
& 1 \\
& 2
\end{aligned}\left(\begin{array}{ccc}
0 & 1 & 2 \\
\frac{1}{4} & 0 & \frac{3}{4} \\
0 & 1 & 0
\end{array}\right)
$$

(a) Find $P^{2}$
(b) Show that $P^{4}=P^{2}$
(c) Find $P^{n}, n \leq 1$.

If the system starts (at step 0) in state 1, find the probability that it occupies the different states at step $n$.

## Answer

$$
\begin{aligned}
P & =\begin{array}{l}
0 \\
1 \\
2
\end{array}\left(\begin{array}{lll}
0 & 1 & 2 \\
\frac{1}{4} & 0 & \frac{3}{4} \\
0 & 1 & 0
\end{array}\right) \\
P^{2} & =\left(\begin{array}{ccc}
\frac{1}{4} & 0 & \frac{3}{4} \\
0 & 1 & 0 \\
\frac{1}{4} & 0 & \frac{3}{4}
\end{array}\right) \\
P^{3} & =\left(\begin{array}{lll}
0 & 1 & 2 \\
\frac{1}{4} & 0 & \frac{3}{4} \\
0 & 1 & 0
\end{array}\right)=P
\end{aligned}
$$

So $P^{2}=P^{4}$
Also $P^{n}=P$ if $n$ is odd and $P^{n}=P^{2}$ if $n$ is even.
So if $\mathbf{p}_{0}=(0,1,0), \quad \mathbf{p}^{(n)}=\mathbf{p}_{0} P^{n}=\left\{\begin{array}{cc}\left(\frac{1}{4}, 0, \frac{3}{4}\right) & n \text { odd } \\ (0,1,0) & n \text { even }\end{array}\right.$
So after an even number of steps the system occupies state 1. After an odd number of steps it occupies state 0 with probability $\frac{1}{4}$ and state 2 with probability $\frac{3}{4}$.

