Question

The waiting list for a particular operation at a hospital consists of j people. The consultant performs at most one operation a day and there is a probability $Q\left(>\frac{1}{2}\right)$ that he will operate on a day. The probability of one new patient being added to the waiting list on a day is P, and the probability of no new patient being added is $(1-P)$. A patient will not have an operation on the same day he is added to the waiting list. When there are $a(>j)$ people on the waiting list the computer goes on strike and all new patients are directed to a different hospital. Show that the length of the waiting list can be described as a simple random walk with two barriers, stating any necessary assumptions. Find the probability that the length of the waiting list reaches a. If $Q=\frac{2}{3}$ and $P=\frac{1}{3}$ find the expected number of days until a strike occurs.

Answer

Let $X_{n}=$ length of waiting list at day n
Let $Z_{n}=$ change in waiting list on day n
Then $X_{0}=j$ and $X_{n}=X_{n-1}+Z_{n} \quad n=1,2,3, \ldots$
Assume that the decision to perform operation is independent of whether a new patient is added.
Then $Z_{n}= \begin{cases}1 & \text { with probabiltiy } P(1-Q)=p \\ -1 & \text { with probability }(1-P) Q=q \\ 0 & \text { with probability }(1-P)(1-Q)+P Q=r\end{cases}$
provided $0<X_{n+1}<a$

$$
\begin{aligned}
& Z_{n}=0 \text { with probability 1when } X_{n-1}=a \\
& Z_{n}=\left\{\begin{array}{ll}
1 & \text { with probability } P \\
0) & \text { with probability } 1-P
\end{array} \text { when } X_{n-1}=0\right.
\end{aligned}
$$

Assuming that activities on different days for both surgeon and patients are independent, the $Z_{n}^{\prime} s$ are independent and $\left(X_{n}\right)$ is a simple random walk with an absorbing barrier at a and a reflecting barrier at 0 .
Let $q_{j}=$ probability of absorption at a from a start at j
Then $q_{j}=p q_{j+1}+q q_{j-1}+r q_{j} j=1,2, \ldots, a-1$

$$
\begin{aligned}
& q_{a}=1 \\
& q_{0}=P q_{1}+(1-P) q_{0} \text { i.e. } q_{1}=q_{0}
\end{aligned}
$$

The general solution of the difference equation is

$$
\begin{array}{ll}
q_{j}=A\left(\frac{q}{p}\right)^{j} & q \neq p \\
q_{j}=A+B j & q=p
\end{array}
$$

To find A and B
Case I: $p \neq q$
$q_{a}=1$ so $A\left(\frac{q}{p}\right)^{a}+B=1$
As $q_{1}=q_{0}$ we get $A+B=A\left(\frac{q}{p}\right)+B \Rightarrow A=0$ therefore $B=1$
Case II: $p=q$
$q_{a}=1$ so $A+B a=1$
As $q_{1}=q_{0}$ we get $A=A+B \Rightarrow B=0$ therefore $A=1$
Hence $q_{j}=1$ in both cases. Absorption is certain.
Now let E_{j} be the expected number of days until absorption.

$$
\begin{aligned}
& E_{j}=p\left(1+E_{j+1}\right)+q\left(1+E_{j-1}\right)+r\left(1+E_{j}\right) \quad j=1,2, \ldots, a-1 \\
& E_{0}=0 \\
& E_{0}=P\left(1+E_{1}\right)+(1-P)\left(1+E_{0}\right) \quad \text { i.e. } 1=P\left(E_{0}+E_{1}\right)
\end{aligned}
$$

The general solution of the difference equation is

$$
E_{j}=A+B\left(\frac{q}{p}\right)^{j}-\frac{j}{p-q} \quad \text { for } p \neq q
$$

When $Q=\frac{2}{3}$ and $P=\frac{1}{3}$; then $p=\frac{1}{9}$ and $q=\frac{4}{9}$. Using these values and the boundary conditions, gives

$$
B=-2 \quad \text { and } \quad A=2 \cdot 4^{a}-3 a
$$

So

$$
E_{j}=2\left(4^{a}-4^{j}\right)+3(j-a)
$$

