Question

State Rouche's theorem and use it to show that all the roots of the equation

$$
z^{6}+\alpha z+1=0
$$

where the constant α satisfies $|\alpha|=1$, lie in the annulus $\frac{1}{2}<|z|<2$.
Use the argument principle to show that, if $\operatorname{Re}(\alpha)>0$, then just one of these roots lies in the first quadrant.

Answer

If $|z|=\frac{1}{2}, \quad\left|z^{6}+\alpha z\right| \leq|z|^{6}+|\alpha||z|<\left(\frac{1}{1}\right)^{6}+\frac{1}{2}<1$
So $z^{6}+\alpha z+1$ has no roots in $|z| \leq \frac{1}{2}$
If $|z|=2, \quad \alpha z+1|\leq|\alpha|| z\left|+1 \leq 3<2^{6}=|z|^{6}\right.$
so all the roots are inside $|z|=2$
DIAGRAM
Let $\alpha=a+i b, \quad a>0$
$f(z)=z^{6}+\alpha z+1$
On $O A, \quad f=x^{6}+a x+1+i b x$
$\tan \arg f(z)=\frac{b z}{x^{6}+a x+1}$ continuous on $O A$ as $a>0$
This is zero when $x=0$ and $\rightarrow 0$ as $x \rightarrow \infty$, so the total change of $\arg f(z)$ on $O A$ is ϵ_{1} - small.

On $B O \quad z=i y \quad f=-y^{6}+b y+1+i a y$
Consider the real parts $-y^{6}-b y+1$, the derivative is $-6 y^{5}-b$ which is always negative if $b>0$, and which has just one positive root for $b>0$. So $-y^{6}-b y+1$ has one positive root.
So the graph of $\tan \arg f(z)$ is of the form
DIAGRAM
So as y goes from ∞ to 0 , the change of argument of $f(z)$ is $-\pi$.
On the semicircle $\operatorname{Re}^{i \theta} \quad f(z)=R^{6} e^{i 6 \theta}(1+w)-w$ small.
So as $\theta: 0 \rightarrow \frac{\pi}{2} \quad \arg f(z)$ increases by approximately 3π.
Thus $[\arg f(z)]_{C}=2 \pi$ and thus there is just one root in the first quadrant.

