Question
Show that, for z in the upper half plane, |expiz| < 1.
Show that the function

14iz —expiz
flz) =
has a removable singularity at z = 0.
Apply Cauchy’s theorem to f(z) using the contour formed by the real axis
from —R to R and the upper half of the circle |z| = R and, by letting R — oo,
prove that
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Answer
exp(iz) = expix exp —y
So |exp(iz)| =exp—y < 1fory >0
1(z) = l4iz—expiz  —z2—izd+ 2%
22 2
=—1—iz+2% - —-lasz—0
So f(z) when defined at z = 0, by f(0) = —1 is analytic.

Thus /Cf(z)dz =0
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