QUESTION

(i) Find the vector equation of the line L that passes through the two points $A(1,-2,1)$ and $B(2,3,1)$.
(ii) A plane P passes through the three points $C(2,1,-3), D(4,-1,2)$ and $E(3,0,1)$. Obtain two independent vectors that are parallel to P and hence, or otherwise, show that P has the vector equation

$$
\mathbf{r} .(1,1,0)=3
$$

(iii) Find the coordinates of the point of intersection of the line L and the plane P.
(iv) Derive the vector equation of the plane that contains the line L and is perpendicular to the plane P.

ANSWER
(i) $\overrightarrow{A B}=(2-1,3-(-2), 1-1)=(1,5,0)$. So the equation of L is $\mathbf{r}=$ $(1,-2,1)+s(1,5,0)=(1+s,-2+5 s, 1)$
(ii) $\overrightarrow{C D}=(4-2,-1-1,2-(-3))=(2,-2,5)$
$\overrightarrow{C E}=(3-2,0-1,1-(-3))=(1,-1,4)$
$\mathbf{n}=\overrightarrow{C D} \times \overrightarrow{C E}=(-8-(-5), 5-8,-2-(-2))=(-3,-3,0)$
The equation of the plane is $\mathbf{r} . \mathbf{n}=c$ i.e. $\mathbf{r} .(-3,-3,0)=c$
$C(2,1,-3)$ lies on the plane,
therefore $c=(2,1,-3) \cdot(-3,-3,0)=-6-3+0=-9$.
So the equation of the plane is $\mathbf{r} .(-3,-3,0)=-9$ or $\mathbf{r} .(1,1,0)=3$.
(iii) The line L meets the plane P when $(1+s,-2+5 s, 1) \cdot(1,1,0)=3$. Therefore $1+s-2+5 s+0=6 s-1=3$, with solution $s=\frac{2}{3}$, so the point of intersection $=\left(\frac{5}{3}, \frac{4}{3}, 1\right)$
(iv) We need to find a second plane parallel to L and \mathbf{n}.

The normal vector is in the direction $(1,5,0) \times(1,1,0)=(0,0,-4)$
The equation of the plane is $\mathbf{r} .(0,0,-4)=k$.
A is on the plane, so $k=(1,-2,1) \cdot(0,0,-4)=-4$.
Hence the equation of the plane is $\mathbf{r} .(0,0,-4)=-4$ or $\mathbf{r} .(0,0,1)=1$

