QUESTION

(i) Use the elimination method to find the inverse of the matrix

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 1 & -1 \\
3 & 2 & 1 \\
-1 & 0 & 1
\end{array}\right)
$$

and verify that $\mathbf{A A}^{-1}=\mathbf{I}$.
(ii) The inverse of any non-singular matrix \mathbf{C} satisfies the equations $\mathbf{C C}^{-1}=$ $\mathbf{C}^{-1} \mathbf{C}=\mathbf{I}$. Deduce that

$$
\left(\mathbf{C}^{-1}\right)^{T}=\left(\mathbf{C}^{T}\right)^{-1}
$$

(iii) Using parts (i) and (ii), or otherwise, solve the equations $\mathbf{A}^{T} \mathbf{X}=\mathbf{b}$, where \mathbf{A} is the matrix defined in (i) and $\mathbf{b}=\left(\begin{array}{l}4 \\ 1 \\ 4\end{array}\right)$.

ANSWER
(i) $\quad\left(\begin{array}{ccc|ccc}1 & 1 & -1 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 & 1 & 0 \\ -1 & 0 & 1 & 0 & 0 & 1\end{array}\right)$,
$\rightarrow\left(\begin{array}{ccc|ccc}1 & 1 & -1 & 1 & 0 & 0 \\ 0 & -1 & 4 & -3 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1\end{array}\right)$, row $2-3 \times$ row 1
$\rightarrow\left(\begin{array}{ccc|ccc}1 & 1 & -1 & 1 & 0 & 0 \\ 0 & -1 & 4 & 3 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1\end{array}\right),(-1) \times$ row 2
$\rightarrow\left(\begin{array}{ccc|ccc}1 & 0 & 3 & -2 & 1 & 0 \\ 0 & 1 & -4 & 3 & -1 & 0 \\ 0 & 0 & 4 & -2 & 1 & 1\end{array}\right)$, row $1-$ row 2 , row $3-$ row 2
$\rightarrow\left(\begin{array}{ccc|ccc}1 & 0 & 3 & -2 & 1 & 0 \\ 0 & 1 & -4 & 3 & -1 & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{4} & \frac{1}{4}\end{array}\right),\left(\frac{1}{4}\right) \times$ row 3
$\rightarrow\left(\begin{array}{ccc|ccc}1 & 0 & 0 & -\frac{1}{2} & \frac{1}{4} & -\frac{3}{4} \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{4} & \frac{1}{4}\end{array}\right)$, row $1-3 \times$ row 3 , row $2+4 \times$ row 3

Therefore $A^{-1}=\left(\begin{array}{ccc}-\frac{1}{2} & \frac{1}{4} & -\frac{3}{4} \\ 1 & 0 & 1 \\ -\frac{1}{2} & \frac{1}{4} & \frac{1}{4}\end{array}\right)$ $A A^{-1}=\left(\begin{array}{ccc}1 & 1 & -1 \\ 3 & 2 & 1 \\ -1 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}-\frac{1}{2} & \frac{1}{4} & -\frac{3}{4} \\ 1 & 0 & 1 \\ -\frac{1}{2} & \frac{1}{4} & \frac{1}{4}\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
(ii) $C C^{-1}=I$ therefore $\left(C C^{-1}\right)^{T}=I^{T} ;\left(C^{-1}\right)^{T} C^{T}=I$
$C^{-1} C=I$ therefore $\left(C^{-1} C\right)^{T}=I^{T} ;\left(C^{T}\right)\left(C^{-1}\right)^{T}=I$ Hence $\left(C^{-1}\right)^{T}=\left(C^{T}\right)^{-1}$
(iii) $A^{T} X=\mathbf{b}$, solution is $X=\left(A^{T}\right)^{-1} \mathbf{b}=\left(A^{-1}\right)^{T} \mathbf{b}$, using (ii).

Therefore

$$
X=\left(\begin{array}{ccc}
-\frac{1}{2} & 1 & -\frac{1}{2} \\
\frac{1}{4} & 0 & \frac{1}{4} \\
-\frac{3}{4} & 1 & \frac{1}{4}
\end{array}\right)\left(\begin{array}{l}
4 \\
1 \\
4
\end{array}\right)=\left(\begin{array}{c}
-2+1-2 \\
1+0+1 \\
-3+1+1
\end{array}\right)=\left(\begin{array}{c}
-3 \\
2 \\
-1
\end{array}\right)
$$

