Question

With respect to a set of orthogonal axes, origin O the coordinates of A, B, C, D are $(3,2,1),(1,-2,1),(-1,1,2)$ and $(-2,2,0)$ respectively.

Find the angle between $O A$ and $O D$, the direction cosines of a vector perpendicular to $O A$ and $O D$ and the perpendicular distance from C to $A B$.

Find the equation of the plane through D parallel to the plane containing A, B and C.

Answer
$\mathbf{a}=(3,2,1) \quad \mathbf{b}=(1,-2,1) \quad \mathbf{c}-(-1,1,2) \quad \mathbf{d}=(-2,2,0)$
$|a|=\sqrt{14} \quad|d|=\sqrt{8} \quad \mathbf{a} \cdot \mathbf{d}=-2 \quad \cos \theta=-\frac{1}{\sqrt{28}} \Rightarrow \theta=100^{\circ}, 1.761 \mathrm{rad}$
$\mathbf{a} \times \mathbf{d}=(-2,-2,10) \quad|\mathbf{a} \times \mathbf{d}|=\sqrt{108}=6 \sqrt{3}$
direction cosines are $\left(-\frac{1}{3 \sqrt{3}},-\frac{1}{3 \sqrt{3}}, \frac{5}{3 \sqrt{3}}\right)$
Distances of c from the line $A B$ is $\frac{|(c-a) \times|(b-a)|}{|b-a|}=\frac{|(4,-2,14)|}{2 \sqrt{5}}=\frac{3 \sqrt{6}}{\sqrt{5}}$

A normal to the plane is $(a-c) \times(a-b)=(4,-2,14)$ and the equation of the plane is $2 x-y+7 z=-6$

