QUESTION

Decide for each of the following statements whether or not it is true giving a brief explanation of your answer.

- (i) The even permutations in S_n form a subgroup.
- (ii) The union of any two subgroups of group G is itself a subgroup of G.
- (iii) Every finite group is isomorphic to a subgroup of S_n for some positive integer n.
- (iv) For every positive integer n there is a non-abelian group with precisely n elements.
- (v) If $f: G \Rightarrow G'$ is an injective homomorphism then the order of G divides the order of G'.
- (vi) Every subgroup of an abelian group is abelian.

ANSWER

(i) True

 σ_i i = 1, 2 are even \Leftrightarrow each can be written as products of even numbers of transpositions. The product is also a product of an even number of transpositions. so is even.

(ii) True

Let H, K < G. Then for any $h, k \in H \cap K$ $hk \in H$ and $hk \in K$ so $hk \in H \cap K$, $h^{-1} \in H$ and $h^{-1} \in K$ so $h^{-1} \in H \cap K$ and $e \in H$ and $e \in K$ so $e \in H \cap K$.

(iii) True:

Let n = |G| and choose a bijection f between G and $\{1, \ldots, n\}$. f induces an isomorphism from S_G to S_n .

G embeds in S_G via the left regular representation $g \mapsto (\sigma_g : h \mapsto gh)$.

(iv) False

If p is prime then every group of order p is cyclic and therefore abelian.

(v) True

f(G) is a subgroup of G' so |f(G)| divides |G'|. Since f is injective |f(G)| + |G|

(vi) True

Let G be abelian, H < G. For any $g,h \in G$ gh = hg. In particular, for $g,h \in H, \ gh = hg$.