Applications of Partial Differentiation
 Extremes within restricted domains

Question

A building developer has bought a 10 hectare plot of land. On it he could build 6 detached houses per hectare, 8 pairs of semi-detached houses per hectare, or 12 flats per hectare.
The profits for each building are $£ 40,000$ per detached house, $£ 20,000$ per pair of semi-detached houses and $£ 16,000$ per flat.
However, council bylaws require that he build at least as many flats as detached houses or pairs of semi-detached house.
How many of each building should he build to maximize his profit?
Answer
If the developer builds x detached houses, y pairs of semi-detached houses and z flats then his profit will be

$$
P=40000 x+20000 y+16000 z
$$

The imposed constraints mean that

$$
\frac{x}{6}+\frac{y}{8}+\frac{z}{12} \leq 10 \Leftrightarrow 4 x+3 y+2 z \leq 240
$$

and

$$
z \geq x+y
$$

Obviously $x \geq 0, y \geq 0$ and $z \geq 0$.
Now, the planes $4 x+3 y+2 z=240$ and $z=x+y$ intersect where $6 x+$ $5 y=240$. This means that the constraint region has the vertices $(0,0,0)$, $(40,0,40),(0,48,48)$ and $(0,0,120)$. These yield revenues of $£ 0, £ 2240000$, $£ 1728000$ and $£ 1920000$ respectively. So to maximize his profit, the developer should build 40 detached house and 40 flats, but no pairs of semidetached houses.

