Applications of Partial Differentiation

Extremes within restricted domains

Question

$f(x, y)=x y e^{-x y}$ has domain $x>0, y>0$.
Show that $\lim _{x \rightarrow \infty} f(x, k x)=0$.
Is there a limit for f as (x, y) moves arbitrarily far from the origin yet still remaining in the first quadrant?
Is there a maximum value for f in the given domain?
Answer

$$
\begin{aligned}
& f(x, k x)= k x^{2} e^{-k x^{2}} \rightarrow 0 \\
& \text { if } k>0 \\
& \text { as } x \rightarrow \infty \\
& \text { and } f(x, 0)= f(0, y)=0
\end{aligned}
$$

$\Rightarrow f(x, y) \rightarrow 0$ as $(x, y) \rightarrow \infty$ along any straight line from the origin in Q.
But $f\left(x, \frac{1}{x}\right)$ and $f(x, 0)=0, \forall x>0$, even though $\left(x, \frac{1}{x}\right)$ and $(x, 0)$ move arbitrarily close as x increases. And so f has no limit as $x^{2}+y^{2} \rightarrow \infty$.
See that $f(x, y)=r e^{-r}=g(r)$ on the hyperbola $x y=r>0$.

$$
\begin{aligned}
g(r) & \rightarrow 0 \\
\text { as } r & \rightarrow 0, \quad \text { or } r \rightarrow \infty \\
\text { and } g^{\prime}(r) & =(1-r) e^{-r}=0 \\
\Rightarrow r & =1
\end{aligned}
$$

And so $f(x, y)$ is less than $g(1)=1 / e$ everywhere on Q. $\Rightarrow f$ has a maximum value on Q.

