Applications of Partial Differentiation Extremes within restricted domains

Question

 $f(x,y) = xye^{-xy}$ has domain x > 0, y > 0.

Show that $\lim_{x \to \infty} f(x, kx) = 0$.

Is there a limit for f as (x, y) moves arbitrarily far from the origin yet still remaining in the first quadrant?

Is there a maximum value for f in the given domain?

Answer

$$f(x, kx) = kx^{2}e^{-kx^{2}} \to 0$$

as $x \to \infty$ if $k > 0$
and $f(x, 0) = f(0, y) = 0$

 $\Rightarrow f(x,y) \to 0$ as $(x,y) \to \infty$ along any straight line from the origin in Q. But $f\left(x,\frac{1}{x}\right)$ and $f(x,0)=0, \ \forall x>0$, even though $\left(x,\frac{1}{x}\right)$ and (x,0) move arbitrarily close as x increases. And so f has no limit as $x^2+y^2\to\infty$. See that $f(x,y)=re^{-r}=g(r)$ on the hyperbola xy=r>0.

$$g(r) \rightarrow 0$$

as $r \rightarrow 0$, or $r \rightarrow \infty$
and $g'(r) = (1-r)e^{-r} = 0$
 $\Rightarrow r = 1$

And so f(x,y) is less than g(1) = 1/e everywhere on Q. $\Rightarrow f$ has a maximum value on Q.