Applications of Partial Differentiation

Extremes within restricted domains

Question

The temperature of a point of a disk D is given by $T=(x+y) e^{-x^{2}-y^{2}}$
Where D is defined as all points such that $x^{2}+y^{2} \leq 1$.
Find the maximum on minimum values of temperature on D.
Answer
For critical points

$$
\begin{aligned}
0=\frac{\partial T}{\partial x} & =(1-2 x(x+y)) e^{-x^{2}-y^{2}} \\
0=\frac{\partial T}{\partial y} & =(1-2 y(x+y)) e^{-x^{2}-y^{2}} \\
\Rightarrow 2 x(x+y) & =1=2 y(x+y) \\
\Rightarrow x & =y, \quad \text { and } 4 x^{2}=1 \\
\Rightarrow x & =y= \pm \frac{1}{2}
\end{aligned}
$$

The two critical points are then $\left(\frac{1}{2}, \frac{1}{2}\right)$ and $\left(\frac{1}{2}, \frac{1}{2}\right)$. Both of these lie inside the disk, with $T= \pm e^{-1 / 2}$.
Parameterising on the boundary of the disk gives

$$
\begin{aligned}
& x=\cos t \\
& y=\sin t
\end{aligned}
$$

with $0 \leq t \leq 2 \pi$.

$$
\Rightarrow T=(\cos t+\sin t) e^{-1}=g(t), \quad(0 \leq t \leq 2 \pi)
$$

Now $g(0)=g(2 \pi)=e^{-1}$, so for critical points of g

$$
\begin{aligned}
0=g^{\prime}(t) & =(\cos t-\sin t) e^{-1} \\
\Rightarrow \tan t & =1 \\
\Rightarrow t & =\pi / t, \quad \text { or } t=5 \pi / 4
\end{aligned}
$$

This gives

$$
\begin{aligned}
g(\pi / t) & =\sqrt{2} e^{-1} \\
\text { and } g(5 \pi / 4) & =-\sqrt{2} e^{-1}
\end{aligned}
$$

As $e^{-1 / 2}>\sqrt{2} e^{-1}, \min f=-e^{-1 / 2}$ and $\max f=e^{-1 / 2}$.

