Applications of Partial Differentiation Extremes within restricted domains

Question

The temperature of a point of a disk D is given by $T=(x+y)e^{-x^2-y^2}$

Where D is defined as all points such that $x^2 + y^2 \le 1$.

Find the maximum on minimum values of temperature on D.

Answer

For critical points

$$0 = \frac{\partial T}{\partial x} = (1 - 2x(x+y)) e^{-x^2 - y^2}$$

$$0 = \frac{\partial T}{\partial y} = (1 - 2y(x+y)) e^{-x^2 - y^2}$$

$$\Rightarrow 2x(x+y) = 1 = 2y(x+y)$$

$$\Rightarrow x = y, \text{ and } 4x^2 = 1$$

$$\Rightarrow x = y = \pm \frac{1}{2}$$

The two critical points are then $(\frac{1}{2}, \frac{1}{2})$ and $(\frac{1}{2}, \frac{1}{2})$. Both of these lie inside the disk, with $T = \pm e^{-1/2}$.

Parameterising on the boundary of the disk gives

$$x = \cos t$$
$$y = \sin t$$

with $0 \le t \le 2\pi$.

$$\Rightarrow T = (\cos t + \sin t)e^{-1} = g(t), \quad (0 \le t \le 2\pi)$$

Now $g(0) = g(2\pi) = e^{-1}$, so for critical points of g

$$0 = g'(t) = (\cos t - \sin t)e^{-1}$$

$$\Rightarrow \tan t = 1$$

$$\Rightarrow t = \pi/t, \text{ or } t = 5\pi/4$$

This gives

$$g(\pi/t) = \sqrt{2}e^{-1}$$

and $g(5\pi/4) = -\sqrt{2}e^{-1}$

As $e^{-1/2} > \sqrt{2}e^{-1}$, $\min f = -e^{-1/2}$ and $\max f = e^{-1/2}$.