Applications of Partial Differentiation
 Extremes within restricted domains

Question

Find the maximum and minimum values of

$$
f(x, y)=x y(1-x-y)
$$

Over the triangle with vertices $(0,0),(1,0)$ and $(0,1)$.
Answer
It can easily be seen that $f(x, y)=0$ on all three of the boundary segments, and that $f(x, y)>0$ inside the triangle, therefore maximum value of f must occur at a critical point inside the triangle.
For critical points

$$
\begin{aligned}
& 0=f_{1}(x, y)=y(1-2 x-y) \\
& 0=f_{2}(x, y)=x(1-x-2 y)
\end{aligned}
$$

And so the only critical points are $(0,0),(1,0)$ and $(0,1)$ and $(1 / 3,1 / 3)$. These are all on the boundary of the triangle, except for $(1 / 3,1 / 3)$ which is inside.
The maximum value of f over the triangle is

$$
f(1 / 3,1 / 3)=\frac{1}{27}
$$

