Applications of Partial Differentiation Extremes within restricted domains

Question

Find the maximum and minimum values of

$$f(x,y) = xy - x^3y^2$$

Over the square $0 \le x \le 1$, $0 \le y \le 1$.

Answer

$$f_1 = y - 3x^2y^2 = y(1 - 3x^2y)$$

 $f_2 = x - 2x^3y = x(1 - 2x^2y)$

This gives (0,0) as a critical point, with any other critical points having to satisfy $3x^2y = 1$ and $2x^2y = 1$. i.e. $x^2y = 0$.

Therefore (0,0) is the only critical point, and so we need only consider values of f on the boundary as possible limits.

When x = 0 or y = 0, f(x, y) = 0.

When x = 1, $f(1, y) = y - y^2 = g(y)$, for $0 \le y \le 1$.

g has a maximum value 1/4 when y = 1/2.

When y = 1, $f(x, 1) = x - x^3 = h(x)$, for $0 \le x \le 1$.

h has a critical point given by $1 - 3x^2 = 0$; only $x = 1/\sqrt{3}$ is on the side of the square.

$$h\left(\frac{1}{\sqrt{3}}\right) = \frac{2}{3\sqrt{3}} > \frac{1}{4}.$$

On the square, f(x,y) has a minimum value of 0. (At point (1,10) and the sides x=0 and y=0.) f(x,y) has a maximum value of $2/(3\sqrt{3})$ (at point $(1/\sqrt{3},1)$, with a smaller local maximum point at $(1,\frac{1}{2})$.