Applications of Partial Differentiation

Extremes within restricted domains

Question

Find the maximum and minimum values of

$$
f(x, y)=x+2 y
$$

On the disk $x^{2}+y^{2} \leq 1$.

Answer

As $f_{1}=1$ and $f_{2}=2, f$ will have no critical points. So the minimum and maximum points must occur at the boundary. f must have minimum and maximum points as f is a continuous on a closed, bounded set in the plane. The boundary is the circle $x^{2}+y^{2}=1$ and can be parameterised as

$$
\begin{aligned}
x & =\cos t \\
y & =\sin t \\
\Rightarrow f(x, y)=f(\cos t, \sin t) & =\cos t+2 \sin t=g(t)
\end{aligned}
$$

For critical points of g

$$
\begin{aligned}
0 & =g^{\prime}(t)=-\sin t+2 \cos t \\
\Rightarrow \tan t & =2 \\
x & = \pm 1 / \sqrt{5} \\
y & = \pm 2 / \sqrt{5}
\end{aligned}
$$

So the critical points of g are

$$
\begin{aligned}
(-1 / \sqrt{5},-2 / \sqrt{5}) & f=-\sqrt{5}=\min (f) \\
(1 / \sqrt{5}, 2 / \text { sqrt } 5) & f=\sqrt{5} \max (f)
\end{aligned}
$$

