Applications of Partial Differentiation

Extremes within restricted domains

Question

Find the maximum and minimum values of

$$
f(x, y)=x y-2 x
$$

On the rectangle $-1 \leq x \leq 1,0 \leq y \leq 1$.
Answer
For critical points

$$
\begin{aligned}
& 0=f_{1}(x, y)=y-2 \\
& 0=f_{2}(x, y)=x
\end{aligned}
$$

So the only critical point is $(0,2)$, this lies outside of the rectangle.
This implies that the minimum and maximum values of f lie on the four boundary segments of the rectangle.
On $x=-1$

$$
\begin{aligned}
& f(-1, y)=2-y \\
& \text { for } 0 \leq y \leq 1
\end{aligned}
$$

This has $\min =1$ and $\max =2$.
On $x=1$

$$
\begin{aligned}
& \quad f(1, y)=y-2 \\
& \text { for } 0 \leq y \leq 1
\end{aligned}
$$

This has $\min =-2$ and $\max =-1$.
On $y=0$

$$
\begin{array}{r}
f(x, 0)=-2 x \\
\text { for }-1 \leq x \leq 1
\end{array}
$$

This has $\min =-2$ and $\max =2$.
On $y=1$

$$
\begin{array}{r}
f(x, 1)=-x \\
\text { for }-1 \leq x \leq 1
\end{array}
$$

This has $\min =-1$ and $\max =1$.
So for f on the rectangle,

$$
\begin{aligned}
\max (f) & =-2 \\
\max (f) & =2
\end{aligned}
$$

