Applications of Partial Differentiation

Extremes within restricted domains

Question

Find the maximum and minimum values of

$$
f(x, y, z)=x z+y z
$$

Over the ball $x^{2}+y^{2}+z^{2} \leq 1$.
Answer
For interior critical points

$$
\begin{aligned}
& 0=f_{1}=z \\
& 0=f_{2}=z \\
& 0=f_{3}=x+y
\end{aligned}
$$

So all points on the line $z=0, x+y=0$ are critical points with $f=0$. Consider the boundary of the ball, $x^{2}+y^{2}+z^{2}=1$.

$$
\begin{aligned}
f(x, y, z) & =(x+y) z \\
& = \pm(x+y) \sqrt{\left(1+x^{2}+y^{2}\right)} \\
& =g(x, y)
\end{aligned}
$$

With g having the domain $x^{2}+y^{2} \leq 1$. On the boundary of this domain, $g=0$. However, g has both positive and negative values within the domain, so only consider CPs of g in $x^{2}+y^{2}<1$

$$
\begin{aligned}
0=g_{1} & =\sqrt{1-x^{x}-y^{2}}+\frac{(x+y)(-2 x)}{2 \sqrt{1-x^{2}-y^{2}}} \\
& =\frac{1-x^{2}-y^{2}-x^{2}-x y}{\sqrt{1-x^{2}-y^{2}}} \\
0=g_{2} & =\frac{1-x^{2}-y^{2}-x y-y^{2}}{\sqrt{1-x^{2}-y^{2}}} \\
\Rightarrow 1 & =2 x^{2}+y^{2}+x y \\
& =x^{2}+2 y^{2}+x y \\
\Rightarrow x^{2} & =y^{2}
\end{aligned}
$$

And so there are two cases:
If $x=-y$

$$
\begin{aligned}
g & =0 \\
\Rightarrow f & =0
\end{aligned}
$$

If $x=y$

$$
\begin{aligned}
2 x^{2}+x^{2}+x^{2} & =1 \\
\Rightarrow x^{2} & =\frac{1}{4} \\
x & = \pm \frac{1}{2}
\end{aligned}
$$

And so g had four CPs, with $g= \pm 1 / \sqrt{2}$.

$$
\begin{aligned}
\min (f) & =\frac{1}{\sqrt{2}} \\
\max (f) & =-\frac{1}{\sqrt{2}}
\end{aligned}
$$

