Applications of Partial Differentiation Extremes within restricted domains

Question

Find the maximum and minimum values of

$$f(x, y, z) = xz + yz$$

Over the ball $x^2 + y^2 + z^2 < 1$.

Answer

For interior critical points

$$0 = f_1 = z$$

 $0 = f_2 = z$
 $0 = f_3 = x + y$

So all points on the line z = 0, x + y = 0 are critical points with f = 0. Consider the boundary of the ball, $x^2 + y^2 + z^2 = 1$.

$$f(x, y, z) = (x + y)z$$

$$= \pm (x + y)\sqrt{(1 + x^2 + y^2)}$$

$$= g(x, y)$$

With g having the domain $x^2 + y^2 \le 1$. On the boundary of this domain, g = 0. However, g has both positive and negative values within the domain, so only consider CPs of g in $x^2 + y^2 < 1$

$$0 = g_1 = \sqrt{1 - x^x - y^2} + \frac{(x+y)(-2x)}{2\sqrt{1 - x^2 - y^2}}$$

$$= \frac{1 - x^2 - y^2 - x^2 - xy}{\sqrt{1 - x^2 - y^2}}$$

$$0 = g_2 = \frac{1 - x^2 - y^2 - xy - y^2}{\sqrt{1 - x^2 - y^2}}$$

$$\Rightarrow 1 = 2x^2 + y^2 + xy$$

$$= x^2 + 2y^2 + xy$$

$$\Rightarrow x^2 = y^2$$

And so there are two cases:

If
$$x = -y$$

$$g = 0$$

$$\Rightarrow f = 0$$

If
$$x = y$$

$$2x^{2} + x^{2} + x^{2} = 1$$

$$\Rightarrow x^{2} = \frac{1}{4}$$

$$x = \pm \frac{1}{2}$$

And so g had four CPs, with $g = \pm 1/\sqrt{2}$.

$$\min(f) = \frac{1}{\sqrt{2}}$$
$$\max(f) = -\frac{1}{\sqrt{2}}$$