Applications of Partial Differentiation Extremes within restricted domains

Question

Find the maximum and minimum values of

$$f(x, y, z) = xy^2 + yz^2$$

Over the ball $x^2 + y^2 + z^2 \le 1$.

Answer

For interior critical points

$$0 = f_1 = y^2$$

$$0 = f_2 = 2xy + z^2$$

$$0 = f_3 = 2yz$$

This makes all points on the x-axis critical points with f=0 Consider the boundary of the ball, $z^2=1-x^2-y^2$. On the boundary

$$f(x, y, z) = xy^{2} + y(1 - x^{2} - y^{2})$$

$$= xy^{2} + y - x^{2}y - y^{3}$$

$$= g(x, y)$$

With g defined for $x^2 + y^2 \le 1$. For internal CPs of g

$$0 = g_1 = y^2 - 2xy + y(y - 2x)$$

$$0 = g_2 = 2xy + 1 - x^2 - 3y^2$$

If
$$y = 0$$

$$\Rightarrow g = 0$$

$$f = 0$$

If
$$y = 2x$$

$$\Rightarrow 0 = 4x^{2} + 1 - x^{2} - 12x^{2}$$

$$9x^{2} = 1$$

$$x = \pm \frac{1}{3}$$

This gives the critical points

Now consider $x^2 + y^2 = 1$

$$g(x,y) = xy^{2}$$

$$= x(1-x^{2})$$

$$= x-x^{3}$$

$$= h(x)$$

For $-1 \le x \le 1$

For the end points $x=\pm 1,\ h=0, \Rightarrow g=0$ and f=0. For the critical points of h

$$0 = h'(x) = 1 - 3x^{2}$$

$$\Rightarrow x = \pm \frac{1}{\sqrt{3}}$$

$$y = \pm \sqrt{\frac{2}{3}}$$
with $h = \pm \frac{2}{(3\sqrt{3})}$

But $2/(3\sqrt{3}) < 12/27$, this is not the maximum value for f

$$\Rightarrow \min(f) = -\frac{12}{27}$$
$$\max(f) = \frac{12}{27}$$