Applications of Partial Differentiation

Extremes within restricted domains

Question

Find the maximum and minimum values of

$$
f(x, y, z)=x y^{2}+y z^{2}
$$

Over the ball $x^{2}+y^{2}+z^{2} \leq 1$.
Answer
For interior critical points

$$
\begin{aligned}
& 0=f_{1}=y^{2} \\
& 0=f_{2}=2 x y+z^{2} \\
& 0=f_{3}=2 y z
\end{aligned}
$$

This makes all points on the x-axis critical points with $f=0$
Consider the boundary of the ball, $z^{2}=1-x^{2}-y^{2}$.
On the boundary

$$
\begin{aligned}
f(x, y, z) & =x y^{2}+y\left(1-x^{2}-y^{2}\right) \\
& =x y^{2}+y-x^{2} y-y^{3} \\
& =g(x, y)
\end{aligned}
$$

With g defined for $x^{2}+y^{2} \leq 1$.
For internal CPs of g

$$
\begin{aligned}
& 0=g_{1}=y^{2}-2 x y+y(y-2 x) \\
& 0=g_{2}=2 x y+1-x^{2}-3 y^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } y=0 \\
& \qquad \begin{array}{r}
\Rightarrow g=0 \\
f=0
\end{array}
\end{aligned}
$$

$$
\text { If } \begin{aligned}
y=2 x & \\
\Rightarrow 0 & =4 x^{2}+1-x^{2}-12 x^{2} \\
9 x^{2} & =1 \\
x & = \pm \frac{1}{3}
\end{aligned}
$$

This gives the critical points

$$
\left.\begin{array}{rl}
\left(\frac{1}{3}, \frac{2}{3} \pm \frac{2}{3}\right) & f
\end{array}\right) \frac{12}{27}, ~\left(-\frac{1}{3},-\frac{2}{3} \pm \frac{2}{3}\right) \quad f=-\frac{12}{27}
$$

Now consider $x^{2}+y^{2}=1$

$$
\begin{aligned}
g(x, y) & =x y^{2} \\
& =x\left(1-x^{2}\right) \\
& =x-x^{3} \\
& =h(x)
\end{aligned}
$$

For $-1 \leq x \leq 1$
For the end points $x= \pm 1, h=0, \Rightarrow g=0$ and $f=0$.
For the critical points of h

$$
\begin{aligned}
0=h^{\prime}(x) & =1-3 x^{2} \\
\Rightarrow x & = \pm \frac{1}{\sqrt{3}} \\
y & = \pm \sqrt{\frac{2}{3}} \\
\text { with } h & = \pm \frac{2}{(3 \sqrt{3})}
\end{aligned}
$$

But $2 /(3 \sqrt{3})<12 / 27$, this is not the maximum value for f

$$
\begin{aligned}
\Rightarrow \min (f) & =-\frac{12}{27} \\
\max (f) & =\frac{12}{27}
\end{aligned}
$$

