Applications of Partial Differentiation

Extremes within restricted domains

Question

Find the maximum and minimum values of

$$
f(x, y)=\frac{x-y}{1+x^{y}+y^{2}}
$$

On the upper half-plane $y \geq 0$.
Answer
For critical points

$$
\begin{aligned}
& 0=f_{1}(x, y)=\frac{1-x^{2}+y^{2}+2 x y}{\left(1+x^{2}+y^{2}\right)^{2}} \\
& 0=f_{2}(x, y)=\frac{-1-x^{2}+y^{2}-2 x y}{\left(1+x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

With any critical points having to satisfy

$$
\begin{aligned}
1-x^{2}+y^{2}+2 x y & =0 \\
-1-x^{2}+y^{2}-2 x y & =0 \\
\Rightarrow x^{2} & =y^{2} \\
\text { and } 2 x y & =-1 \\
\Rightarrow y=-x & = \pm 1 / \sqrt{2}
\end{aligned}
$$

And so the only critical point with $y \geq 0$ is $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, with $f=-\frac{1}{\sqrt{2}}$. On the boundary of the plane, $y=0$

$$
f(x, 0)=\frac{x}{1+x^{2}}=g(x), \quad(-\infty<x<\infty)
$$

This gives $g(x) \rightarrow 0$ as $x \rightarrow \pm \infty$.

$$
g^{\prime}(x)=\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}
$$

So the critical points of g are $x= \pm 1$, with $g(\pm 1)= \pm \frac{1}{2}$. So

$$
\begin{aligned}
\min (f) & =-\frac{1}{\sqrt{2}} \\
\max (f) & =\frac{1}{2}
\end{aligned}
$$

