Applications of Partial Differentiation

Extremes within restricted domains

Question

Find the maximum and minimum values of

$$
f(x, y)=x-x^{2}+y^{2}
$$

On the rectangle $0 \leq x \leq 2,0 \leq y \leq 1$.
Answer
For critical points

$$
\begin{aligned}
& 0=f_{1}(x, y)=1-2 x \\
& 0=f_{2}(x, y)=2 y
\end{aligned}
$$

So the only CP is $\left(\frac{1}{2}, 0\right)$. This lies on the boundary of the rectangle. This boundary has four segments:
On $x=0$

$$
\begin{aligned}
& \quad f(x, y)=f(0, y)=y^{2} \\
& \text { for } 0 \leq y \leq 1
\end{aligned}
$$

This has $\min =0$ and $\max =-1$.
On $y=0$

$$
f(x, y)=f(x, 0)=x-x^{2}=g(x)
$$

for $0 \leq x \leq 2$
Since $g^{\prime}(x)=1-2 x=0$ at $x=\frac{1}{2}$,

$$
\begin{aligned}
g(1 / 2) & =1 / 4 \\
g(0) & =0 \\
g(2) & =-2
\end{aligned}
$$

This has $\min =-2$ and $\max =1 / 4$.
On $x=2$

$$
\begin{aligned}
& \qquad f(x, y)=f(2, y)=-2+y^{2} \\
& \text { for } 0 \leq y \leq 1
\end{aligned}
$$

This has $\min =-2$ and $\max =-1$.

On $y=1$

$$
\begin{array}{r}
f(x, y)=f(x, 1)=x-x^{2}+1=g(x)+1 \\
\text { for } 0 \leq x \leq 2
\end{array}
$$

This has $\min =-1$ and $\max =5 / 4$.
So on the rectangle, f has minimum value $=-2$, maximum value $=5 / 4$.

