Question

Is it true that $\{l+o(1)\} \cosh x - \{1+o(1)\} \sinh x = \{1+o(1)\}e^{-x}$, as $x \to \infty$?

Answer

No!!

$$[1 + o(1)]_{(1)} \cosh x - [1 + o(1)]_{(2)} \sinh x$$

$$= \frac{1}{2} \left\{ [1 + o(1)]_{(1)} e^x + [1 + o(1)]_{(1)} e^{-x} \right\}$$

$$- \frac{1}{2} \left\{ [1 + o(1)]_{(2)} e^x - [1 + o(1)]_{(2)} e^{-x} \right\}$$

$$= \frac{1}{2} [o(1)_{(1)} - o(1)_{(2)}] e^x$$

$$+ \frac{1}{2} \left\{ [1 + o(1)]_{(1)} + [1 + o(1)]_{(2)} \right\} e^{-x}$$

$$= o(e^x),$$

since $o(1)_{(1)} \neq o(1)_{(2)}$ necessarily, e.g., $\frac{1}{x} \neq \frac{1}{x^2}$ as $x \to +\infty$ so it doesn't vanish.

(*) To show o(1) - o(1) = o(1), let f(x) = o(1), g(x) = o(1). Then $f(x) \le K_f$, $g(x) \le K_g$ K_f , $K_g > 0$, $x \to +\infty$ Then

$$|f(x) - g(x)| \le |f(x)| + |g(x)|$$
 by triangle inequality
 $\le K_f + K_g = K$ say as $x \to +\infty$

Therefore $|f(x) - g(x)| \le K \Rightarrow f - g = o(1) \Rightarrow o(1) - o(1) - o(1)$ Similarly o(1) + o(1) = o(1).

(**) To show
$$o(1)e^x + [1 + o(1)]e^{-x} = o(e^x)$$

Clearly $e^{-x} = o(e^x)$ as $x \to +\infty$
Therefore we must show that $o(1)e^x = o(e^x)$ $x \to +\infty$
Let $h(x) = o(1)$, $h > 0$, $x \to \infty \Rightarrow \lim_{x \to \infty} h(x) = 0$
Therefore $\lim_{x \to \infty} \frac{h(x)e^x}{e^x} = \lim_{x \to \infty} h(x) = 0 \Rightarrow o(1)e^x = o(e^x)$