Question

Show that as $x \rightarrow \infty$,
(a) $x+o(x)=O(x)$
(b) $\{O(x)\}^{2}=O\left(x^{2}\right)=o\left(x^{3}\right)$
(c) $\log (1+o(1))=o(1)$

Answer

(a) If $f(x)=O(x)$, then
$\lim _{x \rightarrow \infty} \frac{x+f(x)}{x}=1+\lim _{x \rightarrow \infty} \frac{f(x)}{x}=1$
Therefore $x+f(x)=O(x)$
or $x+o(x)=O(x)$.
(b) First equality:

Suppose $f(x)$ and $g(x)=O(x), \quad x \rightarrow \infty$.
Then there exists K_{f} and $K_{g}>0$ such that

$$
\left.\begin{array}{l}
|f(x)| \leq K_{f}|x| \\
|g(x)| \leq K_{g}|x|
\end{array}\right\} \text { as } x \rightarrow \infty
$$

Thus $|f(x)||g(x)| \leq K_{f} K_{g}|x|^{2}$

$$
\text { or }|f(x) g(x)| \leq K_{h}\left|x^{2}\right| \text { where } K_{h}=K_{f} K_{g}
$$

$$
\Rightarrow \quad f(x) g(x)=O\left(x^{2}\right)
$$

$$
\text { or }\left[O\left(x^{2}\right)\right]^{2}=O\left(x^{2}\right)
$$

Second equality:
Now suppose $\underbrace{h(x)}_{=f . g}=O\left(x^{2}\right) \quad x \rightarrow \infty$.
Then there exists K_{h} such that $|h(x)| \leq K_{h}\left|x^{2}\right| x \rightarrow \infty$
Thus $0 \leq \lim _{x \rightarrow \infty}\left|\frac{h(x)}{x^{3}}\right| \leq \lim _{x \rightarrow \infty} K_{h} \frac{\left|x^{2}\right|}{\left|x^{3}\right|}=K_{h} \lim _{x \rightarrow \infty} \frac{1}{|x|}=0$
Therefore $h(x)=o\left(x^{3}\right)$
or $O\left(x^{2}\right)=o\left(x^{3}\right)$
Hence $[O(x)]^{2}=O\left(x^{2}\right)=o\left(x^{3}\right)$
(c) Suppose $f(x)=o(1)$.

Then $\lim _{x \rightarrow \infty}\left|\frac{f(x)}{1}\right|=0$
Thus $\lim _{x \rightarrow \infty} \log (1+f(x))=\log 1=0$
$\Rightarrow \underline{\log (1+o(1))}=o(1)$

