Question

Show that as $x \to \infty$,

(a)
$$x + o(x) = O(x)$$

(b)
$$\{O(x)\}^2 = O(x^2) = o(x^3)$$

(c)
$$\log(1 + o(1)) = o(1)$$

Answer

(a) If f(x) = O(x), then

$$\lim_{x \to \infty} \frac{x + f(x)}{x} = 1 + \lim_{x \to \infty} \frac{f(x)}{x} = 1$$
Therefore $x + f(x) = O(x)$

or
$$x + o(x) = O(x)$$
.

(b) First equality:

Suppose
$$f(x)$$
 and $g(x) = O(x), x \to \infty$.

Then there exists K_f and $K_g > 0$ such that

$$|f(x)| \le K_f|x|$$

 $|g(x)| \le K_g|x|$ as $x \to \infty$

Thus
$$|f(x)||g(x)| \le K_f K_g |x|^2$$

or
$$|f(x)g(x)| \le K_h|x^2|$$
 where $K_h = K_f K_g$

$$\Rightarrow f(x)g(x) = O(x^2)$$

or $[O(x^2)]^2 = O(x^2)$

Second equality:

Now suppose
$$\underbrace{h(x)}_{=f,g} = O(x^2) \ x \to \infty.$$

Then there exists K_h such that $|h(x)| \leq K_h |x^2| \quad x \to \infty$

Thus
$$0 \le \lim_{x \to \infty} \left| \frac{h(x)}{x^3} \right| \le \lim_{x \to \infty} K_h \frac{|x^2|}{|x^3|} = K_h \lim_{x \to \infty} \frac{1}{|x|} = 0$$

Therefore $h(x) = o(x^3)$

or
$$O(x^2) = o(x^3)$$

Hence
$$[O(x)]^2 = O(x^2) = o(x^3)$$

(c) Suppose
$$f(x) = o(1)$$
.

Then
$$\lim_{x \to \infty} \left| \frac{f(x)}{1} \right| = 0$$

Thus $\lim_{x \to \infty} \log(1 + f(x)) = \log 1 = 0$
 $\Rightarrow \underline{\log(1 + o(1))} = o(1)$