QUESTION

Use the Cauchy Residue Theorem to integrate each of the functions around the circle $|z|=3$ in the counterclockwise sense. (a) $\frac{e^{-z}}{z^{2}}$, (b) $\frac{e^{-z}}{(z-1)^{2}}$, $z^{2} e^{\frac{1}{z}}$.

ANSWER

The integral is $2 \pi i$ (sum of residues inside $|z|=3$). In each case there is only one pole inside $|z|=3$. (a) Pole at $z=0 ; \frac{e^{-z}}{z^{2}}=\frac{1}{z^{2}}\left(1-z+\frac{z^{2}}{2!}+\cdots\right.$. Thus residue at pole is -1 and so integral is $-2 \pi i$. (b) Pole at $z=1$. Put $z-1=w$. Then $\frac{e^{-z}}{(z-1)^{2}}=\frac{e^{-w+1}}{w^{2}}=\frac{e^{-w}}{w^{2}} e^{-1}$ and so by part (a) the residue at $z=1$ is $-e^{-1}$ and so the integral is $-2 \pi i e^{-1}$. (c) $z^{2} e^{\frac{1}{z}}=z^{2}\left(1+\frac{1}{z}+\frac{1}{2 z^{2}}+\frac{1}{6 z^{3}}+\cdots\right)$ and so residue at $z=0$ is $1 / 6$. Thus integral is $2 \pi i / 6=\pi i / 3$.

