Sturm - Liouville

Sturm - Liouville systems

$$
\begin{align*}
\frac{d}{d x}\left(k(x) \frac{d y}{d x}\right)+(\lambda g()-l(x)) y & =0 \quad a<x<b \tag{1}\\
\alpha_{1} y(a)+\alpha_{2} y(b)+\alpha_{3} y^{\prime}(a) \alpha_{4} y^{\prime}(b) & =0 \tag{2}\\
\beta_{1} y(a)+\beta_{2} y(b)+\beta_{3} y^{\prime}(a)+\beta_{4} y^{\prime}(b) & =0 \tag{3}
\end{align*}
$$

The above relations comprise a Sturm-Liouville system: λ is a parameter to be determined. The relation (2) and (3) are linearly independent i.e. the vectors $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right) ;\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)$ are linearly independent.

Examples

1. String with tension $T(x)$ and density $m(x)$ variable along the string, and subject to a transverse restoring force of magnitude $s(x)$ per unit length per unit transverse displacement. For displacement to varying with time as $\cos \omega t$ we find:

$$
\frac{d}{d x}\left(t(x) \frac{d y}{d x}\right)+\left(\frac{\omega^{2}}{c^{2}} m(x)-s(x)\right) y=0
$$

end conditions e.g. $y(0)=0$

$$
y(l)=0
$$

2. Thermally conducting bar with slowly varying cross section $A(x)$, heat loss along the surface $h(x)$ per unit length, no internal generation of heat. Variable conductivity $K(x)$. Variable heat capacity $c(x) /$ unit vol.

$$
\frac{d}{d x}\left[k(x) A(x) \frac{d y}{d x}\right]+[p c(x)-h(x)] y=0
$$

for solutions with a time variation $\alpha e^{-p t}$ and appropriate end conditions.

Existence and Uniqueness of a Solution of a Linear Second Order Equation

$$
y^{\prime \prime}(x)+q(x) y^{\prime}(x)+r(x) y(x)=0
$$

$q(x), r(x)$ continuous in $a \leq x \leq b$
$y(a), y^{\prime}(a)$ assigned arbitrary.
Define the vector $w=\binom{w_{1}}{w_{2}}$
Let norm $w \equiv||w||=\left|w_{1}\right|+\left|w_{2}\right|=o \Leftrightarrow w=0$
$\left\|w_{1}\right\|+\left\|w_{2}\right\| \geq\left\|w_{1}+w_{2}\right\|$
If $M=\left(\begin{array}{ll}m_{1} 1 & m_{1} 2 \\ m_{2} 1 & m_{2} 2\end{array}\right)$ and $c=2 \max \left|m_{i j}\right|$
$\|M w\| \leq c\|w\|$
Define $w^{\prime}(x)=\binom{w_{1}^{\prime}(x)}{w_{2}^{\prime}(x)} \int_{a}^{x} w(t) d t=\binom{\int_{a}^{x} w_{1}(t) d t}{\int_{a}^{x} w_{2}(t) d t}$

$$
\begin{aligned}
\left\|\int_{a}^{x} w(t) d t\right\| & =\left|\int_{a}^{x} w_{1}(t) d t\right|+\left|\int_{a}^{x} w_{2}(t) d t\right| \\
& \leq\left|\int_{a}^{x} w_{1}(t) d t\right|+\left|\int_{a}^{x} w_{2}(t) d t\right| \\
& =\int_{a}^{x} \| w(t) d t| |
\end{aligned}
$$

Now define $v(x)=y^{\prime}(x)$ then $v^{\prime}(x)=-(x) v(x)-r(x) y(x)$
define $w(x)=\binom{y(x)}{v(x)}$
$\frac{d}{d x} w(x)=A(x) w(x)$
where $A(x)=\left(\begin{array}{cc}0 & 1 \\ -r(x) & q(x)\end{array}\right)$
Let $c(x)=2 \max \{1,|r(x)|,|q(x)|\} a \leq x \leq b$
Let $w(a)=\alpha=\binom{y(a)}{y^{\prime}(a)}, c=\sup _{a \leq x \leq b} c(x)$
From (2), integrating from a to x
$w(x)=\alpha+\int_{a}^{x} A(t) w(t) d t$
[This is a vector intrgral equation]
Define the iterant $w^{k}(x) \quad k=0,1, \ldots$ by $w^{0}(x)=\alpha$
$w^{k+1}(x)=\alpha+\int_{a}^{x} A(t)+w^{k}(t) d t \quad k=0,1, \ldots$

1. By induction the w^{k} all exist and are continuous in $[a, b]$
2. By induction on the equation

$$
w^{k+1}(x)-w^{k}(x)=\int_{a}^{x} A(t)\left(w^{k}(t)-w^{k-1}(t)\right) d t
$$

we can show that

$$
\left\|w^{k+1}(x)-w^{k}(x)\right\| \leq\|\alpha\| \frac{[c(x-a)]^{k+1}}{(k+1)!}
$$

3. We then have

$$
\sum_{k=0}^{\infty}\left\|w^{k+1}(x)-w^{k}(x)\right\| \text { converges uniformly in }[a, b]
$$

$$
\text { therefore } \sum_{k=0}^{\infty}\left(w^{k+1}(x)-w^{k}(x)\right) \text { converges uniformly in }[a, b]
$$

$$
w^{k}(x)=\alpha+\sum_{r=0}^{k-1}\left(w^{r+1}(x)-w^{r}(x)\right)
$$

Hence $\lim _{k \rightarrow \infty} w^{k}(x)$ exists $=w(x)$ uniformly in $[a, b]$ and $w(x)$ is continuous in $[a, b]$ letting $k \rightarrow \infty$ in equation (5) we get

$$
w(x)=\alpha+\int_{a}^{x} A(t) w(t) d t
$$

RHS is differentiable, therefore

$$
w^{\prime}(x)=A(t) w(x) \text { amd } w(\alpha)=\alpha
$$

Uniqueness
Assume that $z(x)$ is a solution, continuous and bounded in $[a, b]$, of the integral equation

$$
\begin{aligned}
z(x) & =\alpha+\int_{a}^{x} A(t) z(t) d t \\
w^{k+1}(x) & =\alpha+\int_{a}^{x} A(t) w^{k}(t) d t \\
w^{k+1}(x)-z(x) & =\int_{a}^{x} A(t)\left(w^{k}(t)-z(t)\right) d t
\end{aligned}
$$

By induction we can show that

$$
\left\|w^{k}(x)-z(x)\right\| \leq \frac{m[c(x-a)]}{k!}
$$

where $m=\overline{b d}\|z(x)-a\|$ in $[a, b]$
Therefore $\lim _{k \rightarrow \infty}\left\|w^{k}(x)-z(x)\right\|=0$ uniformly in $[a, b]$
Therefore $\|w(x)-z(x)\|=0$ i.e. $\mid w(x)=z(x)$
($p_{0}>0, p_{0} p_{1} p_{2}$ continuous in $[a, b]$)
A solution of $L(y)=0$ exists in $[a, b]$ such that $y(v), y^{\prime}(c)$ have arbitrary values, $c \in[a, b]$ and this solution is unique.

Wronskian of two solutions

If $u(x), v(x), u^{\prime}(x), v^{\prime}(x)$ are continuous then

$$
W={ }_{a f}\left(\begin{array}{cc}
u(x) & v(x) \\
u^{\prime}(x) & v^{\prime}(x)
\end{array}\right)
$$

is the Wronskian determinant.
(i) $W=0$ in $[a, b]$ is the necessary and sufficient condition that u and v are linearly dependent.
(ii) $W \neq 0$ in $[a, b]$ is the necessary and sufficient condition that u and v are linearly independent.

If now $L(u)=0 L(v)=0$

$$
\begin{aligned}
0 & =v L(u)-u L(v) \\
& =p_{0}\left(v u^{\prime \prime}-v^{\prime \prime} u\right)+p_{1}\left(v u^{\prime}-v^{\prime} u\right) \\
& =p_{0} \frac{d}{d x}\left(v u^{\prime}-v^{\prime} u\right)+p_{1}\left(v u^{\prime}-v^{\prime} u\right)
\end{aligned}
$$

Write

$$
p(x)=\exp \int_{a}^{x} \frac{p_{1}(t)}{p_{0}(t)} d t
$$

therefore $\frac{p^{\prime}(x)}{p x}=\frac{p_{1}(x)}{p_{0}(x)}$
Therefore the above equation is

$$
p \frac{d}{d x}\left(v u^{\prime}-v^{\prime} u\right)+p^{\prime}\left(v u^{\prime}-v^{\prime} u\right)=0
$$

i.e. $p\left(v u^{\prime}-v^{\prime} u\right)=$ constant.
i.e. $\left|\begin{array}{cc}u & v \\ u^{\prime} & v^{\prime}\end{array}\right|=$ constant.
$\int_{a}^{x} \frac{p_{1}(t)}{p_{0}(t)} d t$ is bounded in [a.b].
Therefore $p(x)=\exp \int_{a}^{x} \frac{p_{1}(t)}{p_{0}(t)} d t>0$ in $[a, b]$
Hence
(i) $W=0$ at $x=c \in[a, b] \Rightarrow W=0 a \leq x \leq b$
(ii) $W \neq 0$ at $x=c \in[a, b] \Rightarrow W \neq 0 a \leq x \leq b$

Example of choice of linearly independent solutions.

$u(x): \quad u(a)=1 \quad u^{\prime}(a)=0$
$v(x): \quad v(a)=0 \quad v^{\prime}(a)=1$
$W(u, v)=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1 \neq 0$ therefore u, v, are linearly independent in $a \leq x \leq b$

Fundamental System of solutions

Definition Any pair $u(x), v(x)$ of linearly independent solutions constitute a fundamental system.

Theorem Any solution of $L(y)=0$ is of the form $y=A u+B v$
Proof We can choose A, B such that $y(c), y^{\prime}(c)$ have any assigned values, c in $[a, b]$

$$
\begin{aligned}
y(c) & =A u(c)+B v(c) \\
y^{\prime}(c) & =A u^{\prime}(c)+B v^{\prime}(c)
\end{aligned}
$$

$\left|\begin{array}{cc}u(c) & v(c) \\ u^{\prime}(c) & v^{\prime}(c)\end{array}\right| \neq 0$ therefore A and B are uniquely determined.
Consider $z(x)=y(x)-A u(x)-B v(x)$

$$
\left.\begin{array}{rl}
L(z) & =0 \\
z(c) & =0 \\
z^{\prime}(c) & =0
\end{array}\right\} \quad \begin{aligned}
& -(\mathrm{i}) \text { as } L \text { is linear. }
\end{aligned}
$$

(i) and (ii) are satisfied by $z \equiv 0$, Therefore by the uniqueness theorem this is the only solution.
Therefore $z \equiv 0 \quad a \leq x \leq b$
Therefore $y(x)=A \cdot u(x)+B \cdot v(x) \quad a \leq x \leq b$

Adjoint (2nd order) linear differential operators

$L(u)=\left(p_{0} D^{2}+p_{1} D+p_{2}\right) u$
Let $v=v(x), v^{\prime}(x) v^{\prime \prime}(x)$ exist.

$$
\begin{aligned}
v L(u) & =v p_{0} D^{2} u+v p_{1} D u+v p_{2} u \\
v p_{0} D^{2}(u) & =u D^{2}\left(v p_{0}\right)+D\left[v p_{0} D u-u D\left(v p_{0}\right)\right] \\
v p_{1} D u & =-u D\left(v p_{1}\right)+D\left(v p_{1} u\right)
\end{aligned}
$$

Hence $v L(U)=u\left[D^{2}\left(v p_{0}\right)-D\left(v p_{1}\right)+v p_{2}\right]+D\left[v p_{0} D u-u D\left(v p_{0}\right)+v p_{1} u\right]$
Write $M(v)=D^{2}\left(v p_{0}\right)-D\left(v p_{1}\right)+v p_{2}$

$$
\begin{align*}
& M(v)=p_{0} D^{2} v+\left(2 p_{0}^{\prime}-p_{1}\right) D v+\left(p_{0}^{\prime \prime}-p_{1}^{\prime}+p_{2}\right) v \tag{3}\\
& v L(u)-u M(v) \tag{4}
\end{align*}=\frac{d}{d x}\left(v p_{0} u^{\prime}-u\left(p_{0} v^{\prime}+p_{0}^{\prime} v\right)+p_{1} u v\right) .
$$

M is said to be the adjoint of L in view of the form of R.H.S. Also $L=\operatorname{adj} M$

Self adjoint Operator

Definition L is self adjoint if $M \equiv L$
From (1) and 93) the necessary and sufficient condition is $p_{1}=p_{0}^{\prime}$ then $L(u)=\frac{d}{d x}\left(p_{0} \frac{d u}{d x}\right)+p_{2} u$
If L is self adjoint the from (4) $v L(u)-u L(v)=\frac{d}{d x} p_{0}\left(v u^{\prime}-u^{\prime} v\right)$

Reduction to self-adjoint form

if $L=p_{0} D^{2}+p_{1} D+p_{2}$
Define $p(x)=\exp \int_{a}^{x} \frac{p_{1}(t)}{p_{0}(t)} d t\left(p_{0}>0\right.$ in $\left.[a, b]\right)$
Then $\frac{p^{\prime}(x)}{p(x)}=\frac{p_{1}(x)}{p_{0}(x)}$
Hence

$$
\begin{aligned}
\frac{p}{p_{0}} L(y) & =\left(p d^{2}+p^{\prime} D+\frac{p p_{2}}{p_{0}}\right) y \\
& =\frac{d}{d x}\left(p \frac{d y}{d x}\right)+\frac{p p_{2}}{p_{0}} y
\end{aligned}
$$

Self adjoint System

$$
L(y)=\frac{d}{d x}\left(p \frac{d y}{d x}\right)+q y
$$

Suppose we have a self adjoint operator L. Consider the homogeneous system:

$$
\begin{align*}
& L(y)=0 \quad(a \leq x \leq b) \tag{1}\\
& \left.\begin{array}{l}
0=U_{1}(y)=a_{1} y(a)+b_{1} y^{\prime}(a)+c_{1} y(b)+d_{1} y(b) \\
0=U_{2}(y)=a_{2} y(a)+b_{2} y^{\prime}(a)+c_{2} y(b)+d_{2} y(b)
\end{array}\right\}
\end{align*}
$$

[condition (2) constitutes 2-point boundary conditions]
Let u, v be any two functions such that $u^{\prime} v^{\prime}$ are continuous in $[a, b]$ (not necessarily satisfying $L(y)=0$)
$v L(u)-u L(v)=\frac{d}{d x} p\left(v u^{\prime}-v^{\prime} u\right)$
Therefore
$\int_{a}^{x}(v L u-u L v) d x=-p(b)\left|\begin{array}{cc}u(b) & v(b) \\ u^{\prime}(b) & v^{\prime}(b)\end{array}\right|+p(a)\left|\begin{array}{cc}u(a) & v(a) \\ u^{\prime}(a) & v^{\prime}(a)\end{array}\right|$
Definition The boundary conditions (2) are said to be self-adjoint if R.H.S of (3) vanishes whenever u and v satisfy (2) i.e. $U_{i}(v)=0, U_{i}(v)=0 i=1,2$ and u and v are linearly independent.

Theorem The necessary and sufficient condition for this to occur is
$p(a)\left|\begin{array}{ll}c_{1} & d_{1} \\ c_{2} & d_{2}\end{array}\right|=p(b)\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$

Proof The equations $U_{i}=0 V_{i}=0$ may be written:
$\left(\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right)\binom{u(a)}{u^{\prime}(a)}+\left(\begin{array}{ll}c_{1} & d_{1} \\ c_{2} & d_{2}\end{array}\right)\binom{u(b)}{u^{\prime}(b)}=0$
$\left(\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right)\binom{v(a)}{v^{\prime}(a)}+\left(\begin{array}{ll}c_{1} & d_{1} \\ c_{2} & d_{2}\end{array}\right)\binom{v(b)}{v^{\prime}(b)}=0$
$\Leftrightarrow\left(\begin{array}{cc}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right)\left(\begin{array}{cc}u(a) & v(a) \\ u^{\prime}(a) & v^{\prime}(a)\end{array}\right)+\left(\begin{array}{cc}c_{1} & d_{1} \\ c_{2} & d_{2}\end{array}\right)\left(\begin{array}{cc}u(b) & v(b) \\ u^{\prime}(b) & v^{\prime}(b)\end{array}\right)=0$
$A W_{a}+B W_{b}=0$
Therefore $A W_{a}=-B W_{b}$
Taking determinants:
$|A|\left|W_{a}\right|=|B|\left|W_{b}\right|$
$(|-B|=|B|$ as B is of even order)
Therefore $p(a)\left|W_{a}\right|=p(b)|W-b|$
$\Leftrightarrow p(a)|B|=p(B)|A|$
Examples
(i) $\begin{aligned} & y(a)=0 \\ & y(b)=0\end{aligned} \quad\left(\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}c_{1} & d_{1} \\ c_{2} & d_{2}\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$
(string with fixed ends.)
(ii) $\begin{aligned} & y^{\prime}(a)=0 \\ & y^{\prime}(b)=0\end{aligned}\left(\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}c_{1} & d_{1} \\ c_{2} & d_{2}\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
(string with free ends.)
(iii)

$$
\begin{aligned}
& y(a)=0 \\
& y^{\prime}(b)=0
\end{aligned} \quad\left(\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
c_{1} & d_{1} \\
c_{2} & d_{2}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

(string with 1 fixed end, and 1 free end.)
(iv) $\begin{aligned} & y^{\prime}(a)+\alpha y(a)=0 \\ & y^{\prime}(b)+\beta y(b)=0\end{aligned} \quad\left(\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right)=\left(\begin{array}{cc}\alpha & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}c_{1} & d_{1} \\ c_{2} & d_{2}\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ \beta & 1\end{array}\right)$
(elasticity constrained ends.)
(v) $\begin{aligned} & y(a)-y(b)=0 \\ & y^{\prime}(a)-y^{\prime}(b)=0\end{aligned}\left(\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}c_{1} & d_{1} \\ c_{2} & d_{2}\end{array}\right)=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$
(Periodic boundary conditions.)
In (i) - (iv) $|A|=|B|=0$
In (v) $|A|=|B|=1$ and we require $p(a)=p(b)$

Sturm Loiuville Systems

$\frac{d}{d x}\left(p \frac{d y}{d x}\right)+(\lambda q(x)-r(x)) y=0$
where λ is a parameter. i.e. $L(y)-\lambda q(y)=0$
$L(y)=\frac{d}{d x}\left(p \frac{d y}{d x}\right)-r(x) y$
We assume $p>0$ in $[a, b]$ (later also $r>0, q>0$)
The boundary conditions are:
$U_{i}(y)=a_{1} y(a)+b_{i} y^{\prime}(a)+c_{i} y(b)+d_{i} y(b)=0, \quad i=1,2$
The system is assumed to be self adjoint.

Eigenvalues and Eigenfunctions

Let, v be any linearly independent pair of solutions of $L(y)+\lambda q \cdot y=0$
Then any other solution y is a linear combination of u and v.
$y(x)=\alpha u(x)+\beta v(x)$ where α and β are constants. Now U_{1} and U_{2} are linear and homogeneous.

$$
\begin{aligned}
& U_{1}=\alpha U_{1}(U)+\beta U_{1}(v) \\
& U_{2}=\alpha U_{2}(U)+\beta U_{2}(v)
\end{aligned}
$$

$U_{1}(y)=0 \quad U_{2}(y)=0$ gives
$\left(\begin{array}{cc}U_{1}(u) & U_{1}(v) \\ U_{2}(u) & U_{2}(v)\end{array}\right)\binom{\alpha}{\beta}=0$
For a non trivial solution for α and beta the determint must vanish.
$\Delta(\lambda)=\left|\begin{array}{cc}U_{1}(u) & U_{1}(v) \\ U_{2}(u) & U_{2}(v)\end{array}\right|=0$
The determinant is a function of λ since both y and v satisfy $L(y)+\lambda q y=0$
i.e. $u=u(x, \lambda) \quad v=v(x, \lambda)$
$U_{i}(u)=a_{i} u(a, \lambda)+b_{i} u_{x}(a, \lambda)+c_{i} u(b, \lambda)+d_{i} u_{x}(b, \lambda)$
and
$U_{i}(v)=a_{i} v(a, \lambda)+b_{i} v_{x}(a, \lambda)+c_{i} v(b, \lambda)+d_{i} v_{x}(b, \lambda)$
The equation $\Delta(\lambda)=0$ is the characteristic equation for λ
Definition the value of λ satisfying $\Delta(\lambda)=0$ are the eigenvalue of the system.
When $\lambda=\lambda_{n}$ (an eigenvalue) there is a non-trivial solution for α, β from (2) and the solution $y=\phi_{n}=\alpha_{n} u\left(x, \lambda_{n}\right)+\beta_{n}\left(x, \lambda_{n}\right)$ is said to be the eigenfunction belonging to λ_{n}. ϕ_{n} is uniquely determined apart from any non-zero constant.
We assume
(1) There exists an infinite set $\lambda_{1}, \lambda_{2}, \ldots$ of eigenvalues.
(2) there exist only one linearly independent eigenfunction belonging to λ_{n}. This may not be true in special cases)
Example

1. Suppose the boundary condition is $y(a)=0$, then $y^{\prime}(a) \neq 0$. Suppose $\phi^{\prime} \phi^{2}$ were 2 linearly independent eigenfunctions belonging to λ.
Let $\phi^{3}=\phi^{\prime}-\phi^{2} \frac{\phi^{\prime}(a)}{\phi^{2}(a)}$
$\phi^{3}(a)=0$ as $\phi^{\prime}(a)=\phi^{2}(a)=0$

Also $\phi^{\prime 3}(a)=0$. Therefore as $L\left(\phi^{3}\right)+\lambda q\left(\phi^{3}\right)=0$
$\phi^{3}(x)=0$ in the whole interval. Therefore $\phi^{\prime}=\phi^{2}$ therefore (2) holds.
2.

$$
\begin{aligned}
y^{\prime \prime}+\lambda y & =0 \quad p=1 q=1 \\
y(0) & =y(l) \\
y^{\prime}(0) & =y^{\prime}(l)
\end{aligned}
$$

The solution of the differential equation is
$y=A \cos x \lambda^{\frac{1}{2}}+B \sin x \lambda^{\frac{1}{2}}$
Then

$$
\begin{aligned}
A & =A \cos l \lambda^{\frac{1}{2}}+B \sin l \lambda^{\frac{1}{2}} \\
\lambda^{\frac{1}{2}} B & =\lambda^{\frac{1}{2}}\left(-A \sin l \lambda^{\frac{1}{2}}+B \sin l \lambda^{\frac{1}{2}}\right)
\end{aligned}
$$

Hence (rejecting $\lambda=0$ as trivial) we have

$$
\begin{aligned}
\left|\begin{array}{cc}
\cos \theta-1 & \sin \theta \\
-\sin \theta & \cos \theta-1
\end{array}\right| & =0 \quad \theta=l \lambda^{\frac{1}{2}} \\
(1-\cos \theta)^{2}+\sin ^{2} \theta & =0 \\
2(1-\cos \theta & =1 \quad \theta= \pm 2 n \pi \quad n=1,2, \ldots \\
\lambda_{n} & =\frac{4 \pi^{2}}{l^{2}} n^{2} \quad n=1,2, \ldots
\end{aligned}
$$

For $\lambda=\lambda_{n}$ the equations a for A and B are

$$
\begin{aligned}
& 0 A+0 B=0 \\
& 0 A+0 B=0
\end{aligned}
$$

i.e. A and B are arbitrary.

Therefore $y=A \cos \frac{2 n \pi x}{l}+B \frac{2 n \pi x}{l}$ is an eigenfunction belonging to λn
i.e. $\cos \frac{2 n \pi x}{l}, \sin \frac{2 n \pi x}{l}$ are eigenfunctions belonging to λ_{n} and are linearly independent: (2) doesn't hold.

Independence of eigenvalues with respects to the choice of u and v
Let \bar{u}, \bar{v} be another linearly independent pair of solutions of $L(y)+\lambda q \cdot y=0$
Then $\begin{aligned} & u=c_{11} \bar{u}+c_{12} \bar{v} \\ & v=c_{21} \bar{u}+22 \bar{v}\end{aligned} \quad c_{11}, \ldots$ constant and $\left|\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right| \neq 0$
$U_{i}(u)=c_{11} U_{i}(\bar{u})+c_{12} U_{i}(\bar{u})$
$U_{i}(v)=c_{21} U_{i}(\bar{v})+c_{22} U_{i}(\bar{v}) \quad i=1,2$
i.e. $\left(\begin{array}{cc}U_{1}(u) & U_{2}(u) \\ U_{1}(v) & U_{2}(v)\end{array}\right)=\left(\begin{array}{cc}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right)\left(\begin{array}{cc}U_{1}(\bar{u}) & U_{2}(\bar{u}) \\ U_{1}(\bar{v}) & U_{2}(\bar{v})\end{array}\right)$

Taking determinants $\Delta(\lambda)=\left|\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right|\left|\begin{array}{cc}U_{1}(\bar{u}) & U_{2}(\bar{u}) \\ U_{1}(\bar{v}) & U_{2}(\bar{v})\end{array}\right|=|C| \bar{\Delta}(\lambda)$ and $|C| \neq 0$ therefore $\Delta(\lambda)=0 \Leftrightarrow \bar{\Delta}(\lambda)=0$

Example Uniform string under constant tension and with fixed ends, and no restraining force.
The differential equation is

$$
\begin{aligned}
& y^{\prime \prime}+\lambda y=0 \quad \lambda=\frac{w^{2}}{c^{2}} \\
& a=0, b=l \Rightarrow \begin{array}{l}
U_{1}(y)=y(0)=0 \\
U_{2}(y)=y(l)=0
\end{array}
\end{aligned}
$$

Two linearly independent solutions of the equation are

$$
\begin{aligned}
& u=\cos x \lambda^{\frac{1}{2}} \quad v=\sin x \lambda^{\frac{1}{2}} \\
& u(0)=1 \quad u^{\prime}(0)=0 \quad v(0)=0 \quad v^{\prime}(0)=\lambda^{\frac{1}{2}} \\
& \Delta(\lambda)=\left|\begin{array}{cc}
1 & 0 \\
\cos \lambda^{\frac{1}{2}} & \sin l \lambda^{\frac{1}{2}}
\end{array}\right|=\sin l \lambda^{\frac{1}{2}}
\end{aligned}
$$

Therefore the equation for λ is $\sin l \lambda^{\frac{1}{2}}=0 \Rightarrow \lambda=\frac{n^{2} \pi^{2}}{l^{2}} \cdot \frac{w}{c}=\frac{n \pi}{l}$

Properties of eigenvalues and Eigenfunctions

We assume now that $q(x)>0, r(x)>0$ in $[a, b]$ in addition to $p(x)>0$ in $[a, b]$

1. The eigenvalues are real
2. If $\phi_{m} \phi_{n}$ belong to $\lambda_{m} \lambda_{n}$

$$
\int_{a}^{b} q(x) \phi_{n}(x) \phi_{m}(x) d x=0 \quad(m \neq n)
$$

i.e. $\phi_{1}, \phi_{2}, \ldots$ are orthogonal over $[a, b]$ with weighting function $q(z)$
3. if the boundary conditions are suitably restricted (and $p, q>0 r \geq 0$ in $[a, b])$ then the eigenvalues are positive

Proofs

1.
2. Let λ_{n}, λ_{n} be any two eigenvalues and let ϕ_{m}, ϕ_{n} belong to them. Then

$$
\begin{aligned}
& L\left(\phi_{m}\right)+\lambda_{m} q \phi_{m}= 0 \\
& L\left(\phi_{n}\right)+\lambda_{n} q \phi_{n}=0 \\
& U_{i}\left(\phi_{m}\right)=0 \quad U_{i}\left(\phi_{n}\right)=0 \\
& \int_{a}^{b}\left\{\phi_{n} L\left(\phi_{m}\right)-\phi_{m} L\left(\phi_{n}\right)\right\} d x=p(x)\left[\phi_{n} \phi_{m}^{\prime}-\phi_{m} \phi_{n}^{\prime}\right]_{a}^{b}
\end{aligned}
$$

and the R.H.S $=0$ if the boundary conditions are self adjoint.
Therefore $\int_{a}^{b} b\left\{\phi_{n} L\left(\phi_{m}\right)-\phi_{m} L\left(\phi_{n}\right)\right\} d x=0$
Therefore $\int_{a}^{b}\left\{\phi_{m} \lambda_{n} q \phi_{n}-\phi_{n} \lambda_{m} q \phi_{m}\right\} d x=0$
Therefore $\left(\lambda_{n}-\lambda_{m}\right) \int_{a}^{b} q \phi_{m} \phi_{n} d x=0$
Therefore $\int_{a}^{b} q \phi_{m} \phi_{n} d x=0 \quad m \neq n$
(i) If $\lambda=\rho+i \sigma$ is an eigenvalue and $\phi=X+i Y$ is an eigenfunction belonging to it then $\bar{\lambda}$ is also an eigenvalue and $\bar{\phi}$ will belong to it.
For $L(\phi)+\lambda q \phi=0$

$$
\Rightarrow \overline{L(p h i)}+\overline{\lambda q \cdot q}=0
$$

$$
\Rightarrow L(\bar{\phi})+\bar{\lambda} q \cdot \bar{\phi}=0
$$

Since L is a real linear operator and q is real.
Also $U_{i}(\phi)=0 \Rightarrow U_{i}(\bar{\phi})=0$ as U_{i} is real and linear.
Hence in (i) above take $\lambda=\lambda_{n}$ and $\bar{\lambda}=\lambda_{m}$
Then

$$
\begin{aligned}
\left(\bar{\lambda}-\lambda \int_{a}^{b} q \phi \bar{\phi} d x\right. & =0 \\
(\bar{\lambda}-\lambda) \int_{a}^{b} q|\phi|^{2} d x & =0 \quad q>0 \quad|\phi| \not \equiv 0
\end{aligned}
$$

therefore $\bar{\lambda}-\lambda=0$ i.e. λ is real.
3.

$$
L\left(\phi_{n}\right)+\lambda q \cdot \phi_{n}=0
$$

Therefore $\lambda_{n} \int_{a}^{b} q \phi_{n}^{2} d x=-\int_{a}^{b} \phi_{n} L\left(\phi_{n}\right) d x$

$$
\begin{aligned}
\phi_{n} L\left(\phi_{n}\right) & =\phi\left(\frac{d}{d x} p \frac{d \phi_{n}}{d x}-r \phi_{n}\right) \\
& =\frac{d}{d x} \phi_{n} p \frac{d \phi_{n}}{d x}-p\left(\frac{d \phi_{n}}{d x}\right)^{2}-r \phi_{n}^{2}
\end{aligned}
$$

therefore $\lambda_{n} \int_{a}^{b} a \phi_{n}^{2} d x=\int_{a}^{b}\left(p \phi_{n}^{2^{\prime}}+r \phi_{n}^{2}\right) d x-\left[p \phi_{n} \phi_{n}^{\prime}\right]_{a}^{b}$
Therefore if the boundary conditions are such that

$$
\left[p \phi_{n} \phi_{n}^{\prime}\right]_{a}^{b} \leq 0 \quad \lambda_{n}>0
$$

Examples

(i) $y(a)=0 \quad y(b)=0 \Rightarrow \phi_{n}(a)=\phi_{n}(b)=0 \quad$ and $\quad\left[p \phi_{n} \phi_{n}^{\prime}\right]_{a}^{b}=0$
(ii) $y^{\prime}(a)=0 \quad y^{\prime}(b)=0 \Rightarrow \phi_{n}^{\prime}(a)=\phi_{n}^{\prime}(b)=0 \quad$ and $\quad\left[p \phi_{n} \phi_{n}^{\prime}\right]_{a}^{b}=0$
(iii)

$$
\begin{aligned}
y^{\prime}(a)-h_{1} y(a) & =0 \quad h_{1}>0 \\
y^{\prime}(b)+h_{2} y(b) & =0 \quad h_{2}>0 \\
-\left[p \phi_{n} \phi_{n}^{\prime}\right]_{a}^{b} & =-p(b)\left(-h_{2} \phi_{n}^{2}(b)\right)+p(a)\left(h_{1} \phi_{n}^{2}(a)\right)>0
\end{aligned}
$$

(iv) $y(a)=y(b) \quad y^{\prime}(a)=y^{\prime}(b)$

Here, with the condition for self adjointness $p(a)=p(b),\left[p \phi_{n} \phi_{n}^{\prime}\right]_{a}^{b}=0$

Formal Explanations in Eigenfunctions

Consider the homogeneous system

$$
\begin{array}{rlrl}
L(y)+\lambda q \cdot y & =0 & (L & \left.=\frac{d}{d x} p \frac{d}{d x}+r\right) \\
U_{i}(y)=0 & i & =1,2 .
\end{array}
$$

with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots$
and eigenfunctions $\phi_{1}, \phi_{2} \ldots$
We assume that the ϕ_{n} have been normalised

$$
\text { i.e. } \int_{a}^{b} q \phi_{n}^{2} d x=1
$$

If a function $F(x)$ defined in $[a, b]$ has a uniformly convergent expansion

$$
F(x)=\sum_{1}^{\infty} A_{n} \phi_{n}(x)
$$

then

$$
\int_{a}^{b} q(x) \phi_{m}(x) F(x) d x=A_{m}
$$

Consider the non-homogeneous system

$$
\begin{aligned}
L(y)+\lambda q \cdot y & =f(x) \\
U_{i}(y) & =0 \quad i=1,2
\end{aligned}
$$

1. If λ is not an eigenvalue of the homogeneous system the solution is unique.
2. If $\lambda=\lambda_{m}$ a necessary condition for existence of a solution is that

$$
\int_{a}^{b} \phi_{m}(x) f(x) d x=0
$$

i.e. f must be orthogonal to ϕ_{m}.
3. if $\lambda=\lambda_{m}$ and f is orthogonal to ϕ_{m}, then the solution is not unique.

Proofs

1. Suppose y and z are two solutions

$$
\begin{array}{rlrlrl}
L(y)+\lambda q \cdot y & =f(x) & U_{i}(y) & =0 & i=1,2 \\
L(z)+\lambda q \cdot z & =f(x) & U_{i}(z) & =0 & i=1,2 \\
L(y-z)+\lambda q \cdot(y-z) & =0 & U_{i}(y-z) & =0 & i=1,2
\end{array}
$$

i.e. $L(y-z)$ is a solution of the homogeneous system. If λ is not an eigenvalue this must be zero. Therefore $y=z$ in $[a, b]$
3. If $\lambda=\lambda_{m}, y-z=A \phi_{m}(x)$ where A is an arbitrary constant i.e. $y=z+A \phi_{m}(x)$ and the solution is not unique.
2. $\int_{a}^{b}\left[\phi_{m} L(y)-y L\left(\phi_{m}\right)\right] d x=\left[p(x)\left[\phi_{m} y^{\prime}-\phi_{m}^{\prime} y\right]\right]_{a}^{b}=0$
since $y_{v} \phi_{m}$ satisfies the boundary conditions which are self adjoint. i.e.

$$
\begin{align*}
& \int_{a}^{b}\left[\phi_{m}\{f(x)-\lambda q \cdot y\}-y\left\{-\lambda_{m} q \phi_{m}\right\}\right] d x=0 \\
& \lambda-\lambda_{n} \int_{a}^{b} q \phi_{m} y d x=\int_{a}^{b} \phi_{m} f d x \tag{1}
\end{align*}
$$

Therefore λ is an eigenvalue i.e. $\lambda=\lambda_{m}$,

$$
\int_{a}^{b} \phi_{m} f d x=0
$$

Formal Series Solution

If we assume y has an expansion in eigenfunction we have from (1) above.

$$
\left(\lambda-\lambda_{n}\right) a_{n}=\int_{a}^{b} \phi_{n} f d x=b_{n}
$$

hence if λ is not an eigenvalue $a_{n}=\frac{b_{n}}{\lambda-\lambda_{n}} \quad n=1,2, \ldots$
i.e. $y=\sum_{n=1}^{\infty} \frac{\phi_{n}(x)}{\lambda-\lambda_{n}} \int_{a}^{b} \phi_{n}(\xi) f(\xi) d \xi$

If $\lambda=\lambda_{m}$ then $a_{n}=\frac{b_{n}}{\lambda_{m}-\lambda_{m}} \quad m \neq n$ and $0 \cdot a_{m}=0$ Therefore

$$
\sum_{\substack{n=1 \\ n \neq m}}^{\infty} \frac{\phi_{n}(x)}{\lambda_{m}-\lambda_{n}} \int_{a}^{b} \phi_{n}(\xi) f(\xi) d \xi+A \phi_{m}(x), \quad \text { A arbitrary }
$$

Stationary Property of Eigenvalues

When the boundary conditions are such that $\left.[p(x) y x) y^{\prime}(x)\right]_{a}^{b}=0$ we have

$$
\lambda_{n}=\frac{\int_{a}^{b}\left(p \phi_{n}^{\prime 2}+r \phi_{n}^{2}\right) d x}{\int_{a}^{b} q \phi_{n}^{2} d x}
$$

Write

$$
\left.\begin{array}{l}
I(\phi, \psi)=\int_{a}^{b}\left(p \phi^{\prime} \psi^{\prime}+r \phi \psi\right) d x \\
J(\phi, \psi)=\int_{a}^{b} q \phi \psi \\
\lambda_{n}=\frac{I\left(\phi_{n}, \phi_{n}\right)}{J\left(\phi_{n}, \phi_{n}\right)} \tag{2}
\end{array}\right\}
$$

We suppose that ϕ_{n} are normalised i.e. $J\left(\phi_{n}, \phi_{n}\right)=1$
then $\lambda_{n}=I\left(\phi_{n} . \phi_{n}\right)$
Consider $\lambda_{n}=I(\phi, \phi)$ where $J(\phi, p h i)=1$
and
(i) ϕ^{\prime} continuous in $[a, b]$
(ii) ϕ satisfied the boundary conditions
(it does not necessarily satisfies $L(y)+\lambda q(y)=0$)
We show that $\lambda=I(\phi, \phi)$ is stationary for small variations of ϕ from ϕ_{n}. This is the extremum property of the integral $I(\phi, \phi)$ subject to the normalising condition $j(\phi, \phi=0$ and to $(i),(i i)$.
Write $\phi(x)=\phi_{n}(x)+\epsilon \psi(x)$, where ϵ is a constant and ψ satisfies (i) and also the boundary conditions since U_{i} is linear. We show that

$$
I(\phi \phi)-I\left(\phi_{n} \phi_{n}\right)=O(\epsilon)
$$

The normalising condition on ϕ is
$1=J(\phi, p h i)=J\left(\phi_{n} \phi_{n}\right)+2 \epsilon J\left(\phi_{n} \psi\right)+\epsilon^{2} J(\psi \psi)$
$1=1+2 \epsilon J\left(\phi_{n} \psi\right)+\epsilon^{2} J(\psi \psi)$
Therefore $2 \epsilon J\left(\phi_{n} \psi\right)+\epsilon^{2} J(\psi \psi)=0$

$$
\begin{aligned}
I(\phi \phi) & =I\left(\phi_{n} \phi_{n}\right) 2 \epsilon I\left(\phi_{n} \psi\right)+\epsilon^{2} I(\psi \psi) \\
I\left(\phi_{n} \psi\right) & =\int_{a}^{b}\left(p \phi_{n}^{\prime} \psi_{n}^{\prime}+r \phi_{n} \psi\right) d x \\
& =\left[p \phi_{n}^{\prime} \psi_{n}^{\prime}\right]_{a}^{b}+\int_{a}^{b}\left\{-\psi \frac{d}{d x} p \phi_{n}^{\prime}+r \phi_{n} \psi\right\} \\
0=\left[p \phi \phi^{\prime}\right]_{a}^{b} & =\left[p \phi_{n} \phi_{n}^{\prime}\right]_{a}^{b}+\left[\epsilon p\left(\phi_{n} \psi^{\prime}+\phi_{n}^{\prime} \psi\right)\right]_{a}^{b}+\left[\epsilon^{2} p \phi \phi^{\prime}\right]_{a}^{b}
\end{aligned}
$$

From the self adjoint condition

$$
\left[p\left(\phi_{n} \psi-\psi_{n}^{\prime} \phi\right)\right]_{a}^{b}=0
$$

Therefore

$$
\left[p \phi_{n}^{\prime} \psi\right]_{a}^{b}=\left[p \phi_{n} \psi^{\prime}\right]_{a}^{b}=0
$$

Therefore

$$
\begin{aligned}
I\left(\phi_{n} \psi\right) & =\int_{a}^{b} \psi\left[-L\left(\phi_{n}\right)\right]_{a}^{b}=0 \\
& =\lambda_{n} \int_{a}^{b} q \psi \phi_{n} d x \\
& =\lambda_{n} J\left(\phi_{n} \psi\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
I(\phi \phi)-I\left(\phi_{n} \phi_{n}\right) & =2 \epsilon \lambda_{n} J\left(\phi_{n} \psi\right)+\epsilon^{2} I(\psi \psi) \\
& =\epsilon^{2}\left[I(\psi \psi) \lambda_{n} J(\psi \psi)\right]
\end{aligned}
$$

This establishes the stationary property.

Illustration

$$
y^{\prime \prime}+\lambda y=0 \quad y(0)=0 \quad y(1)=0
$$

The exact solution for λ_{1} and ϕ_{1} is $\phi_{1} x \sin \pi x \quad \lambda_{1}=\pi^{2} \approx 9.87$
The normalised $\phi_{1} i s 2^{\frac{1}{2}} \sin \pi x$
Take $\phi=C x(1-x)$
$\int_{0}^{1} \phi^{2} d x=C^{2} \int_{0}^{1} x^{2}(1-x)^{2}=C^{2} \frac{\Gamma(3) \Gamma(3)}{\Gamma(6)}=\frac{C^{2}}{30}$
Therefore $\phi=\sqrt{30} x(1-x)$
$I(\phi \phi)=\int_{0}^{1} \phi^{\prime 2} d x=30 \int_{0}^{1}(1-2 x)^{2} d x=30 \frac{1}{6} 2=10$
Compare with 9.87 thus the error is $\approx 1.4 \%$

Formulation of the eigenvalue problem as an "isoperimetric problem"

The eigenvalues of the system $L(y)+\lambda q \cdot y=0$ with $y(a)=y(b)=0$ are the extrema of $I=\int_{a}^{b}\left(p \phi^{\prime 2}+r \phi^{2}\right) d x$
subject to the normalising condition $J=\int_{a}^{b} q \phi^{2} d x=1$ and
(i) ϕ^{\prime} continuous in $[a, b]$
(ii) $\phi(a)=\phi(b)=0$

