Bessel Functions

Vibrations of a Membrane

The governing equation for the displacement w(z,y,t)from the equilibrium
position (the plane z = 0) is

1 3 w
0? 0?
2 _ - -
Vi= 0x? + 0y?

[ The assumptions are:-

(i) That the action across the element DeltaS is a force TAS perpendic-
ular to AS, where 7" — T as AS — 0

(ii) the displacement w of any point of the membrane is purely transverse.

ow\®  [ow)® %.
(iii) that [(83&) + (83/) ] is small. ]

It can be shown that the tension is isotropic at a point at a point (i.e.
independent of the orientation of AS), independently of (ii) and (iii), and
for equilibrium or motion from (ii) it can be shown that T is uniform over the
membrane and ¢ = T'/ mass/unit area. We assume c?*=constant. The usual
boundary condition for a finite membrane) is that w = 0 on the boundary.

Simple Harmonic Vibrations

w(z,y,t) = W(z,y) cos(wt + €) (2)

Then
V2W + AW =0 K== (3)
c
For a circular membrane (complete or annular) we use plane polar coordinates
r, 0
1 8 o 102
2 _ _ -
Vi= ror or N r2 062

Therefore
10 E)W 1 0°W

2 _
ror 8r+ 2 062 tEW =0




This is separable. i.e. we can find solutions of the form W (rf) = F(r)G(6)
by substitution we have

L1d (dF), . 118G
Frdr\ dr 2G d?
Therefore | PG
T .2
G =constant= —n (4)
Therefore
G(0) = Acosnb + Bsinnf
d dF 9 9 9
A F =
dr( dr)+(kr n) 0 (5)

2

[Note that < (r2E) + (k*r — ) F = 0 is the self adjoint for ?????7?7?7?7?]

In (5) write kr = x (not the co-ordinate)

d [ dF A
Sl Earm +(z°—n")F =0 (6)

This is Bessel’s Equation of order n.

The solution of the original equation V2W 4+ k?WW = 0 must be periodic in
of period 27, for otherwise W would not be a one valued function of position.
Therefore n is an integer.

Series solution for F

We assume F' Z a1 where c is to be found.

m=0

- p 5
<xd_> —n? x(m+c) — [(m + 0)2 _ n2]xm+c
T

d>2 | po :
—n?| F = ay[(m+c)* —n’lz"**
( dx =3

m
r2F = Z amx”+c+2 Z Qo™

m=0
0 oo
Hence we require Z am[(m + c)? — n?lz™te 4 Z Ao =0
m=0 m=2

this is true if
ag(c® —n?) = 0 Indicial equation
ai(c+1°—n?) =0



(M F & —n2) +amo m=23,...
Since ag # 0, ¢ = £n
In the second, putting ¢ =n

a1(2n+1)=0
In the third, putting c =n, m = 3,5, ...

az3(2n+3)+a; =0---
We suppose n # —%, —%, .
Thenay =a3=...=0
For m = 2,4,6, ... in the third relation

2(2 +2 =y =
a2(2+2n) + a0 = az 22-1(n+ 1)
Qo

asd(4+42n) +ay = a4 =

_ (=1)™ao
22mml(n+1)...(n+m)
Hence we have one solution (taking ¢ = n)

B S ) R

24.1-2(n+1)(n+2)

Q2m

Zoml(n+1)...(n+m) \2
1
The Bessel function J,(z) is defined by taking ag = m
o/a\ 1 > (=1 T\
Jn(x) = (5) I'(n+1) n’LZ:O ml(n+1)...(n+m) <§>
sy
= mil(m+n+1)\2

The series converges for all x, by the ratio test. So J,(z) is an integral
function of x. If L, is the operation in Bessels equation L_,(y) = L,(y)
since n appears as n>

L,[Jn(x)] =0 for all n

Therefore L_,[j_n(z)] =01ie. L,J_,(x)] =0

Hence J_,(z) is a solution.

T(e)= 3 m!F((n_"Ll—)W;”L+ 1 <§)_n+2m

When n is a non-negative integer I'(m + n + 1) is infinite from



—2, ... Therefore

m=0,1,2,...,n— 1 since I'(z) has poles at z =0, —1,
o] (_1)m <x)n+2m
J_,(x) = —
(z) Zm!f‘(m—n+1 2

m

Il
3

Write m=n + k

00 -1 k T 2k+n o
L) =¥ CR (5) T = i

k=o0
Wronskin of J, and J_,

I Jon

W:‘J’ J!

d d . n?
we have — [2—Jop | + (2 — — | J1n =0
dr \ dx T
d !/ !
Therefore e {x[JnJ_n - JnJ_n]} =0

Le. z[J J_, — J,J',] = C (constant).
¢ = lim x[J T — T ]

;-G

 r(n41) 1'(n—|—1)+”
-n 2
J = L 1 _ i + .o
o r(—n+1) (—n+1)
,_ () 2
= 1
xd, T(n+1)[ +Ox}
/ " (%>_ 2
-\
xJ_, f—n+ 1) [ + Oz }
Therefore J_,, - zJ, —xJ" , J, = 2n [1+ 027
T (14 n)0(1—m)
2n 2 2sinnm
Therefore C' = = =
T T Pl 1 —m) T -n)T(n) 5
_ 2sinnm

Therefore J_,, - xJ, —xJ' , J, =

r m
Thus J, and J_,, are linearly independent when n is not an integer.
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and J, and J_, are linearly dependent when n is an integer.

Definition of the second solution [Weber]

Yo(z) = cosnmd, — J_,

sinnm
when n tends to an integer the numerator tends to 0 nd the denominator tens
to 0. Hence when m is an integer we define Y, () = lim Y;,(x) Therefore

el . 5 5
Y, (z) = on [cosnmJ, — J_p] _ wsinnmd, +cosnmg. — - J
m - - =
5, ST e T COS TN, .

: 1[0 0 210
In particular Yy(z) = - l(a—an>n_O - <—a—an>n_J = [%Jn] .

The functions of the second kind of order n. They are unbounded at z = 0,
for fro the relation between .J,, and and other solution of Bessel’s equations,
say Yy, (x), we have

Yo, =Y ]| =C

Yo J — Y/, =<

X

If ¢ # 0 then Y,, and Y, can not exist at x=0. Hence the general solution of
Bessels equations is

either AyJ,(z) + B1J_,(z) (n not an integer)

or Ay J,(z) + B1Y,(x) (all cases)

A solution bounded at x = 0 is necessarily AJ,(x)

Returning to the membrane problem

1. Complete membrane (0 < r < a). Since W must be bounded at r = 0,
we have F(r) = AJ,(kr)

and W(r0) = AJ,(kr)cos(nf + ¢) (n integer > 0)
Since W =0onr=a. AJ,(ka) =0
A = 0 is trivial therefore J,,(ka) = 0.

This is an equation for the eigenvalues k?, k3, .... Hence for a given n
the values of k are given by ka = 7,1, jno, ... Where j,1, jno, ... are the
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positive zeros of J,(x). The allowed frequencies (frequencies of normal

modes) are R -, w = kc Therefore
a2pi

c, . .
w:g(]nbjn%---) n=0,1,.._

2. Annular Membrane b < r < a.

In this case » = 0 is not in the “physical space ”. Therefore we must

take F(r) = AJ,(kr) + BY,(kr)
F(a)=0 F(b) =0 give:-

AJ,(ka) + BY,(ka) =
AJ,(kb) + BY,(kb) = 0

Hence for non-trivial A, B

‘AJn(k‘a) BY,(ka) —0

AJ,(kb)  BY,(kb)

Sketch of J[) J1 JQ

b1 ) )

J»_.(z> (£)3_1_+_<£)5_£_
7\ 2 ? 121 " \2/) 2131

Note also J(z) = —J1(2)
PICTURE
) ) 2\ 2 T T
The asymptotic formula for J,(z) is J,(x) ~ <—> oS <x — 1 + n§)
e

Orthogonal and normal Properties of Jg (j,X)

where j1, j5... are the zeros of jo(x).
We show that

[ ) o) = 0 p#m



the functions are orthogonal to weight function = over [a, b].

d d
—az—Jo(az) + o’z do(az) = 0

ddx dczlz;
;;x [Jg(ﬁaz)CZ:Jo(ax) — Jg(ax)czl}o(ﬁx)] = (a® — )z Jo(ax)Jo(Bz)

1

Therefore x [Jo(ﬁx)CZEJo(Ozx) - Jo(a@jxc]o(ﬁx)] }
I(a? = %) Jy Jo(ax) Jo(B) da

1.e.

0

(a® — %) /01 zdo(ax) — Jo(Bz)de = Jo(a)BIN(B) — Jo(B)ady()
= Jo(B)Ji(a) = Jo(@)BJ1(B)

Ifa:jm 6:jp m?'ép

1
/0 2 Jo(Jmz) Jo(jpz)dx =0

/01 vJi(ar) = ég% _ajo(ﬂ)Ji(zaz—;fJO(a)Jéﬁ

T
B %Numerator ]
=«

a .
I %Denomlnator 5

_25

a0)—ad(a) [0, _
_ [%(ﬁJO(ﬁ))—l-ﬁJo(ﬁ) =0

_ [=a) aJé(a)%(ﬁJéﬁ)]
[B=a

—2«

1 1

Therefore / vJ2(ax) = iJf(a) + J3 (o) [Jy = —J1]
0

Therefore then a = j,,

! : : 1 o .
| e i) JoGp) e = T ()
It also follows that if f{, f;,... are the zeros of J{(z) then

! s s Lo,
| 2 oin) FoGy) de = S T3 Gy



1
Special Cases of/ Jo(anx)f(x)dx
0

In (1) take a = an (a zero) § # a,, m=1,2, ...

1 o,
Then | () Jo(Br) dz = w2 @) 1) 3)
. _ L ' _ Jilew)
In this put =0 and Jy(0) =1 and so [ xJo(a,x)dx = - (4)
0 n
(4) can also be obtained as follows:
d d ,
%a:%Jo(anx) = —a;xJo(anx)
Therefore
2 [! d '
_a”/o zo(apz)dr = xﬁJo(anz) )
anJy(an)
= _anjl (an)

Next we consider .
I, :/ zJo(ax)z® dx
0

We have i
%x%ﬂ)(am) = —ao’*zJy(ax) (i)
a @ kg2 k-1
Lo k“x (i)
Therefore

d d d
e {l‘kdxjg(@l'> — Jo(ax)dxxk} = —Jo(ax){za?s® + k2" 1}
Therefore by integration over [0,1]

—?I, — KLy = aJj(a) — kJo(a)

Therefore Iy I5,... can be found in terms of Jo(«) and Ji(«). I; and I can
be found in terms of the “Sturve function ”

_ /01 Jo(az)drqJy(a)Jy ()



Formal Fourier - Bessel Explanations

Assume that f(z), defined in [0,1], possesses and expansion

= i ApJo(anx)

n=1

Then

/01 vJo(amz) f(z)dr = iAm /01 xJo(nz) Jo(px)de

A, = 2—)/0 zJo(am,) f(z) dx

Initial and Boundary Problem for the Vibrating Membrane

We have, for the displacement w(r,t) in radially symmetric vibrations

ror \| or )~ 2 or =r=a
w(0,t) exists and w(a,t) =0
Also w(r,0) = f(r) 0<r<a at(rO) 0 0<r<a

Choose a - unit of length and choose unit on time so that ¢ = 1. Also replace
r by x, giving

10 0w _ o
20x 0x  Of
w(0,t) exists and w(l,t) =0
Also w(z,0) = f(x) %—I;(x,O) =0

Assume w(z, t) Z Jo(n)pn(t)

This satisfies the boundary conditions
1 1

§J12(04n)¢>n(t) = / zw(z,t)Jo(onr)de
0

9



S0 = [ whlawn) Sy

1 0 ow
= /0 Jo(oznx)% <x%> dx

ow]’ 1 3w d
= [Jo(anm)xa—x} 0 ) %Jo(anx)dx
= 0+ l wx—Jo (avpz ] —I—/ w— JO () dx

= 0+ | w[-a’zJo(a,r)]dz
0

1
= —a®- S Ji(an)én(l)
Therefore )
o(t) + and(t) =
and
On(t) = A, cos(a,(t) + By sin(ap,t))
w(z,0)=f(z) 0<z<1
Ew(m.O)zO 0<xz<i
Therefore

f2) - iJo(anx>¢n<0>
0 - §Jo<anx>a'sn<o>

) 1 1
bn =0, 0u(0) - ST en) = [ wdo(ana)f(@)do
ie. B, =0 A, = Jf(zOén) /01 xJo(anx) f(x) dx

Hence we have the series solution for w(x,t)

z,t) = 21: Jo(apx) cos oznte]%(Qan) /01 yJo(any) fy) dy
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Alternative procedure

Solutions of the differential equation bounded at = = 0

are Jo(kx)[A cos kt 4 sin kt]

This satisfies the boundary conditions w(1,¢) = 0 if Jy(k) = 0 thus
k= aq, Qa, ...

The solution also satisfies a—w(xO) =0if B, =0.

ot
Formally the series Z ApJo(anx) cos a,t satisfies both boundary conditions
n=1

and the initial conditions on —. Therefore as w(zo) = f(z) thus
f(z) => AnJo(anz) Therefore

A, - %Jf(ozn) = /0 zJo(anz) f(x) do.

Example
Jo(kx
fla)=1- 35(5
k real and Jy(k) # 0
[zl athayds = FoDmlo) = Slan) kA )
0 o2
anjl(Oén)
i ' J1 (o,
k =0 gives /0 vJo(omz)de = 12%)

/01 v o(anr) f(z)de = “‘Y”){ai _“%}

Hence in this case:

w(z,t) =Y Jolanz) cos ayt - =

n=1

Since a,, = O(n) for large N, and Ji(a,) = O (L> =0 <i>

1
7
1
Then the coefficient of Jy(a,x) cos(ayt) is O ()
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Solution of a linear differential equation by definite integral (or a
contour integral)

Preliminary Remarks

Consider the differential equation
z¢(D)y +¢(D)y =0
where

d(p) = agp" +arp” M+ ... +ay
v(p) = bop™ + bip™ 4+ .+ by,

Seek a solution

b
y:/ eP* K (p)dph.2inot y:/ eP* K (p)dp
a C

where K(p) is to be found and a,b (or C') are also to be found (and are
independent of x.)

Then
b
oDy = [ (D) K (p)dp
= [ ot K )
oDy = [ W) K@)
then w6(D)y = [ v o) K (p)ip
= [ Bl
— (WKL~ [ oK @)
Hence
b b d
oDy + 0Dy = o KO+ [ {00 0) ~ oK s b
(i) Choose K(p) so that the integrand is zero. i.e.
LK)} = 60 KE) = Lo K(p)
dp o(p)

12



therefore

o) = Coxp{ [ 8an|

Note: if all the zeros of ¢ are simple

Y Z" a P
—_ = —:1 —_ ,raT
¢ T q—qrj/ ¢ °8(p —pr)

Therefore K, = [[(p — p,)*
1
(i) when K (p) is known we choose a and b (or C) so that

€7 K (p) o (p)]" = 0

Consider Bessel’s equation on order n

{(di)}

Substitute y = 2"z



Hence y satisfies Bessel’s equation if z satisfies

d? d
{x<dx2+ >+( n + )dx}z 0

Consider a solution for z of the form
b

/emK(t)dt

Then
d—2+1 + (2 +1)i /b R (t)dt
a2 R O A

-/ (1= ) + (20 + ViV K (e dt

1—¢2 . b b 1 —¢2

— l,tem}((t)} +/ et l—jt{ .t K(t)} +it(2n + 1)K (t)| dt
1 a 1

Hence choose K (t) so that

d 2
%(1 — ) K(t) = —(2n — 1)tK(1)

K(t) = c(1— )"z

hence a solution of Bessel’s equation is

b
y = x"/ et (1 — t2)" 24t
if a and b are chosen so that

[(1 - tl)n+%eit:p}b =0

Suppose n > —% and also z is real and positive
[There is no difficulty if z = z is complex]
Admissible Pairs of limits

(i) (~1,+1)

(i) (=1, =1+ ic0)

(iii) (+1,41 + i00)

PICTURE
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These integrals must be linearly dependent since that are solutions of a second
order equation. With proper specification of (1 — t2)"_% the relation is 1 =
(i) - (iii)
Consider

/e"“’(l — 2"t
round the contour shown.
PICTURE
We choose that branch of (1 — ¢2)""2 which is real and positive on AA'.
ie. arg(l —t) =0, arg(l+1¢) = 0 on AA". AS t passes from a to b round
AB arg(1 —t) decreases by 7; as t passes from A’ to B’ round A'B’arg(1+-t)
increases byZ. Since the integrand e"*(1 — tZ)"_% is now one-valued and
regular on and inside the countour, by Cauchy’s Theorem we have

Juor = hion ™ fen ey Sy v ™
{A’A} {A’A} {B'C"} {CB} {C'C} {A’B'} {BA}

We show
li =0
(a) h1—>I§o {c'C}
(b) lim = lim =0

€E—00 {A/B/} €E—00 {BA}

We shall then have

/ 622535(1 - t2)nf%dt — / eztm<1 - t2)n7% - / eztac(l - t2>nf%
-1 —1 1
le.
(1) = (id) — (iid)
since the limits if the three integrals exist as e — oo if n > —% and as h — oc.
on CC', |1 — 2| = PX - PX' < C"X - CX' = h? + 4
’eitac’ — |€i1’(u+ih)‘ — e—x—‘rh
Therefore | [| < e ™ (h24+4)""2 -2 — 0 as h — oo
on AB we have t — 1 = ee'® Therefore |t — 1|72 = "2
e (¢2 — 1)"~3 is bounded in the neighbourhood of ¢ = 1 with bound M say.

1

Therefore [¢™*(t2 — 1(""2| < M
M
Thus / Tt
AB

< Me™s . 5676”_% —0ase—0
Similarly / —0ase—0(n> _%)
B'A

15



Hence we have the following solutions of Bessel’s equation
1 L
(i) x"/ et (1 — )2t
0
—1+ic0 | 9 1
(ii) 2" / ¢l (1 — $2)"= 3 dt
—1

fl4ico
(iii) 2™ / eite(1 — $2)"~ 3 dt
+1

Series Expansions of (i)

(i) = 2" /_ll(z' — ) i; (izl)mdt

the series for all x, t absolutely and uniformly.

. o n - (Zﬁ)m ! m 2\n—1
(i) = «x EOW/—lt (1 —t*)""2dt
1 1
/ (1 — 2y"3dt = 0if m is odd
1 1 1 1
/ 21— " 2dt = 2/ t2m(1 — 3" 2dt
0

1 1
= 2/ u"(1- u)”_% - Zuzdu
0 2
1

= /Oum_%(l—u)”_%du
L(n+ H(m+ 1)
I(m+n+1)
& (i)™ y(n+ 3)D(m+ )
>0 = 2 T Fmn 1)

m=0
F(m—l—%) _ (%)%%...m_%
(2m)! 1-2-3---(2m —1)2m
_ I
C22m gy




— 2T(n+ %)r (1) To(x) = Jo(z)

2
1 .
2nr<n+ %)F (%) X (2)

Hanbel Functions of order n (Bessel functions of the third kind)

Definition
! = — ! - (i1
H6) = 2 grgmy) 6
9 B 1
Then ]
In(@) = §(HT§1)($) + H (x))
we also define )
Yo(z) = Z(Hﬁl) (x) — H? (x))

Alternative integral representation of H(!) (x) and HY (x)

In the integral representation for H("(z), arg(1—t) = —% Therefore we write

(1—-1t) = ne_%i(:_i". Where 7 goes from 0 to oo through real values as t goes
from 1 to 1+ io00. Thus

U’

(1 -yt %o
Also

itx eix(lJrin)
dt = —e 2%

. n—1
= (L= )" adt = 2r T ey (1 + ﬂ) dy

1 . nmw__w 1
23 ™ i(z—2F—7)  roo N
= HO(2) = T / e~ <1+ﬁ) RUBN0)
0
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In the integral for H(? (z) arg(t+1) = I Therefore (t+1) = ne = in where
1 goes from 0 to oo as t goes from -1 to +1 4 100 we get similarly

23 e i@ —F) oo m -3
H{P) () = [T (- e @)
F(z)F(n—l—%) 0 2

[Note: when x is real and positive, H("(z), H? (z) are complex conjugates.
Therefore 1[H{V (z) + H?) (z)] is real, so is 2%[H(l)( ) — H?(2)]]

n

Finally substitute nz = u in both integrals. For real and positive u goes from
0 to oo as 1 goes from 0 to oo

T (3) T(n+3 27
2\2 1 G_i(x_%_z) o0 1 u\" é
T e
(z) z) T(3) Tn+3) Jo e 2 "

1
00 . n—3
Asymptotic Expansions of / e Uu" 2 (1 + E) du
0

We consider the case n = 0 i.e.

N
=
|

1 1
(1—1)> :

the last term is

. U
writing { = —
2ix




13 .. _1 s 1 —n—z
Uy _322°""Mh—3 U /1_ n1(1_i) 2
T (x) (n—1)! (2iz)" Jo (1-0) 2ix’
If x is real and positive
LI B SO
2iz | 4x2 -
Therefore
13 _ 1 .n 1
u 22 M —3 u / 1— )1 1d
Tn (,’L‘)‘ = n| (21‘)” 0 ( U) U
13 1 n
_ 22 M7 5 U
n! (2x)"
Hence
1 n—113 1
o0 1 U 2 55 r—s5 1 o0 1
u 21— — du = 22 2 / U" 3 Rn
/0 © < Qix) " = rl (2iz)" Jo ey i dut Bula)
R.(z) = / e My, (u> du
0
o0 1N1T 3 1
/0 e "u” 2du—F(T+=F(2)2'2"'7‘—2
Also
|R.(x)| < / e "2 \rp—|du
0 x
SR ERIUE Ry
n! (2z)" Jo
Therefore
1 n—1713 172
© 1 u O\ "2 1 [Z2--.r—2]7 1
Y12 (1 — — du=T{= 22 2
/0 © < Qil’) B (2) rz:(:) r! (2iz)"
1.3 172
_ L3 .51 1
Where |R,| < S M| - lim 2"t =0
n! (2z)n w—o

There the series is the asymptotic expansion of the left hand side.

(In fact R, =0 (m%))

19



Divergence of the Infinite series

The D’Alernbert ratio is
(n+3)* 1

1] 1(n+3)?

2x n

no 2
which tends to infity for and .

Asymptotic Expansion of H}" (x) H (x)

2
1 o |13 _1
Dy i)Q i(a—T) [22 " 2} 1
Ho™ () <7T£L‘ o Tz:% r! (2ix)"
2
9Ny Woo[lﬁ T_l] 1
H (1) ~ <> Cie-T) N~ 122 2
o (@) nz) © Tz:% 7! (2ix)"
where the remainder after the term in - has modulas < |term in —|
" v
Write ) )
1 1 L 1 u \ 2 RN | U\ 2
A =31 l/o © (1 2m> dutf,oen <1+2m> du}
Bo) = s | [T e (1_i)‘%d [T e <1+1)‘%d
DTery [ © 2ir) T 2iz) "
2\% =
H(gl)@) = (—) i D [A(z) + iB(x)]
T/
2 5 s
1) = (=) e PlA@) - iB(@)
e
1
Jo(x) = 5 (" (0) + Hy (2))
2\ 2 T ) T
= (E) A(x)cos(x—z>—B(ac)sm(x—z)]
_ g 2
Vo) = o (B (@) — Y ()

A(z)sin (x - %) — B(z) cos (:c - %)}

The general Bessel function of zero order is
AyJo(x) + B1Yo(z) = C(cosxJy() + sinzYy(x))

20



From the definitions of A(x) and B(x)
< (152 4 (1)
A~

% C %]2 (—1)r+!

=
BE) ~ 2 5 (o

: T _ B(x)
The zeros are given by cot(z — i a) = A
1 1 1
Aw) =1+0(5;)  Bla)=-5 +0()
Therefore A(2) X X
x
mm“w+o<ﬁ>

Therefore for large x, the zeros are approximately given by cot(z —

1
ie. xr— % —a= <k+§)7rk = large integer.
+(k+3)
r=a« — |7
4

Asymptotic Expansions of Hgl)(x) & HE,2) (x)
1

1 2N s & (=1)"m,n)

Hé>(g;)w<_> o= 4)2—

T (22'35

(@) ~ (= ) eieF-9 3 |

m=0

)
(=1)™(m,n)
2m
where (0,n
(4n - 1 )(4n? —32) -+ (4n? — (2m — 1)?)
2mm |
There expansion are only ugeful when z >>n

(m,n) =

Bessel Functions of order (k+3)k=0,1,---
We have




10 =3 (3) o 5

m=0

3
22mm!F(m+§) = 22"I0(Z)== .- m +

) =z
2\ 2
= |— ) sinz
T
Similarly
2\ 2
J 1(z) = () COS T
2 T
2\ 2 2\ 2
Hil) = —ie (—) H?) = jeie (—)
3 T T
1
H (@) = -2

The functions H ,Sr) i (z), H ]i) 1 () are called spherical Bessel functions. They
2 2

arise in solution of the wave equation in spherical Polar coordinates.
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Radially Progressive Waves in two dimensions

We had for the membrane

180%w , * P
2

2
Vlw— a— V12@+8—y2

and found solutions (in the case of radial symmetry)

w = [AJy(kr) + BYy(kr)] cos(wt +¢€) k= v

c

assuming the form .
w = f(r)e™

(real parts to be taken eventually) we find similar form

w= [A1H0 (kr) + AyH (/{:T)]emt

since
2
- (3
0 o e’ as r — 0o
2
Hé ( Tttt as o 00
wkr
we get
N ( >_ i(w(t+2)—T)
wkr

2
H(()Q) (kr)ezwt ~ (

z(w(t——)——)
6 c 4

The first repents a wave converging to the origin with velocity ¢, the second
a wane diverging from the origin with velocity c.
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