Application to Vibrating String

We have a uniform string of length l, mass per unit length m, and equilibrium tension T. Let there be a disturbing (transverse) force f(x,t) per unit length. With the assumptions that

- 1) There are no longitudinal body forces (or negligible forces).
- 2) Displacement y(x,t) is purely transverse.
- 3) $\frac{\partial y}{\partial x}$ is small compared with 1.

it can be shown that to the first order T is uniform along the string, and the equation of motion is

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^y}{\partial t^2} - \frac{1}{T} f(x, t)$$
when $c = \left(\frac{T}{m}\right)^{\frac{1}{2}}$ (1)

For free motion f = 0 and we have

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2} \tag{2}$$

Seeking solutions of the form

$$\frac{1}{X}\frac{\partial^X}{\partial x^2} = \frac{1}{c^2}\frac{1}{Y}\frac{d^2Y}{dt^2}$$
 $y = X(x)Y(t)$

Hence both sides are constant and we write the constant as $-\frac{w^2}{c^2}$.

This gives
$$\frac{d^2Y}{dt^2} = -w^2Y$$

$$Y = A\cos wt + b\sin wt \tag{3}$$

and
$$\frac{d^2X}{dt^2} = -\frac{w^2}{c^2}X\tag{4}$$

$$X = C\cos\frac{w}{c}x + D\sin\frac{w}{c}x\tag{4a}$$

For fixed ends we require y(0,t) = y(l,t) = 0

Therefore
$$X(0) = 0$$
 $X(l) = 0$

$$(5)$$

The differential equation (4), and the conditions (5) constitute a two-point boundary problem. The differential equation includes a parameter $\lambda = \frac{w^2}{c^2}$ not yet determined.

In fact we show below that λ must have one of a set of values $\lambda_1 = \frac{\pi^2}{l^2}$, $\lambda_2 = \frac{(2\pi)^2}{l^2} \cdots$.

$$\lambda_1 = \frac{\pi^2}{l^2}, \ \lambda_2 = \frac{(2\pi)^2}{l^2} \cdots$$

These are the eigenvalues, the corresponding solutions $X(x,\lambda)$ are the eigenfunctions.

i.e. (4) and (5) constitute an eigenvalue problem.

$$X = C\cos\frac{w}{c}x + D\sin\frac{w}{c}x$$

The conditions (5) give C = 0 and $D \sin \frac{wt}{c} = 0$

Hence for a non-trivial solution $\sin \frac{wl}{c} = 0$, therefore $w = \frac{n\pi c}{l}$ $n = 1, 2 \cdots$

Hence solutions satisfying (5) are

$$y = \sin \frac{n\pi x}{l} \left[A_n \cos \frac{n\pi ct}{l} + B_n \sin \frac{n\pi ct}{l} \right]$$
 (6)

These are the normal modes of vibration and the values of $\frac{w}{2\pi}$, i.e. $\frac{c}{2l}, \frac{2c}{2l} \cdots$ are the normal frequency.

Formally a general solution satisfying (2) and the end conditions (5) is

$$y = \sum_{n=1}^{\infty} \sin \frac{n\pi x}{l} \left[A_n \cos \frac{n\pi ct}{l} + B_n \sin \frac{n\pi ct}{l} \right]$$

If this series converges and is twice differentiable term-by-term then the function y is a solution.

Given initial conditions

Suppose that $\dot{y}(x,0) = 0$ and y(x,0) = F(x) $0 \le x \le l$

Now a solution satisfying $\dot{y}(x,0) = 0$ is

$$y = \sum_{1}^{\infty} A_n \sin \frac{n\pi x}{l} \cos \frac{n\pi ct}{l} \tag{1}$$

when t = 0 this gives $y(x, 0) = \sum_{n=1}^{\infty} A_n \sin \frac{n\pi x}{l}$.

Hence
$$\sum_{1}^{\infty} A_n \sin \frac{n\pi x}{l}$$
 is the sine series expansion of $F(x)$ in $0 \le x \le l$.
i.e. $A_n = \frac{2}{l} \int_0^l F(x) \sin \frac{n\pi x}{l} dx$ (2)

Interpretation of solutions in terms of progressive waves

We have
$$y = \frac{1}{2} \sum_{1}^{\infty} A_n \left[\sin \frac{n\pi}{l} (x + ct) + \sin \frac{n\pi}{l} (x - ct) \right]$$

Write $F_s(x) = \sum_{1}^{\infty} A_n \sin \frac{n\pi x}{l}$
 $F_s(x) = \begin{cases} F(x) & 0 \le x \le l \\ -F(-x) & -l \le x \le 0 \end{cases}$
 $F_s(x + 2l) = F_s(x)$
 $y = \frac{1}{2} \{ F_s(x + ct) + F_s(x - ct) \}$
 $\frac{\partial^2 y}{\partial t^2} = \frac{1}{2} \{ F_s''(x + ct) + F_s''(x - ct) \}$
 $\frac{1}{c^2} \frac{\partial^2 y}{\partial t^2} = \frac{1}{2} \{ F_s''(x + ct) + F_s''(x - ct) \}$

Whenever $\zeta = x + ct$ and $\eta = x - ct$ are such that F(x) is twice differentiable at the values concerned.

Also
$$y(x,0) = \frac{1}{2} \{ F_s(x) + F_s(x) \} = F(x)$$

$$y(0,t) = 0 (F_s(x) \text{ odd})$$

$$y(l,y) = \frac{1}{2} \{ F_s(l+ct) + F_s(l-ct) \}$$

$$= \frac{1}{2} \{ F_s(l+ct) + F_s(-[l+ct]) \} = 0 (F \text{ periodic } 2l).$$

Plucked String

$$F(x) = \frac{h}{a}x \qquad 0 \le x \le a$$
$$= \frac{h}{l-a}(l-x) \qquad a \le x \le l$$

$$A_{n} = \frac{2}{l} \int_{0}^{l} F(x) \sin \frac{n\pi x}{l} dx$$

$$= \frac{2}{l} \left[-\frac{F(x)}{\frac{n\pi}{l}} \cos \frac{n\pi x}{l} \right]_{0}^{l} + \frac{2}{l} \int_{0}^{l} F'(x) \frac{\cos \frac{n\pi x}{l}}{\frac{n\pi}{l}} dx$$

$$= 0 + \frac{2}{l} \left[F'(x) \frac{\sin \frac{n\pi x}{l}}{\left(\frac{n\pi}{l}\right)^{2}} \right]_{0}^{a} + \frac{2}{l} \left[F'(x) \frac{\sin \frac{n\pi x}{l}}{\left(\frac{n\pi}{l}\right)^{2}} \right]_{a}^{l} - \int_{0}^{l} F''(x) \frac{\sin \frac{n\pi x}{l}}{\left(\frac{n\pi}{l}\right)^{2}} dx$$

$$= \frac{2}{l} \frac{l^{2}}{n^{2}\pi^{2}} \sin \frac{n\pi a}{l} [f'(a-0) - f'(a+0)] \quad \text{as } f'' \equiv 0$$

$$= \frac{2l}{n^{2}\pi^{2}} \sin \frac{n\pi a}{l} \left[\frac{h}{a} + \frac{h}{l-a} \right]$$

$$= \frac{2hl^{2}}{n^{2}\pi^{2}a(l-a)} \sin \frac{n\pi a}{l}$$

Therefore
$$y(x,t) = \frac{2l^2h}{\pi^2a^2(l-a)} \sum_{1}^{\infty} \frac{\sin\frac{n\pi x}{l}\sin\frac{n\pi a}{l}}{n^2}\cos\frac{n\pi ct}{l}$$

Note that any normal mode which has a node at x = a is absent from the series since in that case $\sin \frac{n\pi a}{l} = 0$ for all n.

This occurs when $\frac{a}{l} = \text{rational } \frac{r}{s}$ r < s.

Then $\sin \frac{n\pi a}{l}$ vanishes for $n = s, 2s, 3s \cdots$.

The corresponding modes are absent.

Physical Illustration of Parseval's Theorem

$$K.E = \frac{1}{2} \int_0^l m \left(\frac{\partial y}{\partial t} \right)^2 dx$$

The P.E of the element $\triangle x$ is the work done by the tension at the ends in extending the element from $\triangle x$ to $\left(\triangle x^2 + \triangle y^2\right)^{\frac{1}{2}}$

i.e. to
$$\triangle x \left(1 + \left(\frac{\triangle y}{\triangle x}\right)^2\right)^{\frac{1}{2}} = \triangle x \left(1 + \frac{1}{2}\left(\frac{\triangle y}{\triangle x}\right)^2 + \cdots\right)$$

Therefore the extension is $\frac{1}{2} \left(\frac{\partial y}{\partial x} \right)^2 dx$

The work done is
$$\frac{1}{2}T\left(\frac{\partial y}{\partial x}\right)^2dx$$

Therefore the total work done is $\frac{1}{2} \int_0^l T\left(\frac{\partial y}{\partial x}\right)^2 dx$

$$y = \sum_{1}^{\infty} C_n \sin \frac{n\pi x}{l} \cos \left(\frac{n\pi ct}{l} + \alpha_n\right)$$

$$\frac{\partial y}{\partial t} = \sum_{1}^{\infty} -\frac{n\pi c}{l} \sin \frac{n\pi x}{l} C_n \sin \left(\frac{n\pi ct}{l} + \alpha_n\right)$$

$$\frac{\partial y}{\partial x} = \sum_{1}^{\infty} \frac{n\pi}{l} \cos \frac{n\pi x}{l} C_n \cos \left(\frac{n\pi ct}{l} + \alpha_n\right)$$
Applying Paragraphs formula

Applying Parseval's formula

$$\int_0^l \left(\frac{\partial y}{\partial t}\right)^2 dx = \frac{\pi^2 c^2}{l^2} \sum_1^\infty n^2 \left(C_n \sin\left[\frac{n\pi ct}{l} + \alpha_n\right]\right)^2 \frac{l}{2}$$

$$\int_0^l \left(\frac{\partial y}{\partial t}\right)^2 dx = \frac{\pi^2}{l^2} \sum_1^\infty n^2 \left(C_n \cos\left[\frac{n\pi ct}{l} + \alpha_n\right]\right)^2 \frac{l}{2}$$

Hence
$$K.E = \frac{1}{2}m\frac{\pi^2 c^2}{l^2} \sum_{n=1}^{\infty} n^2 C_n^2 \sin^2\left(\frac{n\pi ct}{l} + \alpha_n\right) \frac{l}{2}$$

 $T = mc^2 \text{ so } P.E = \frac{1}{2}m\frac{\pi^2 c^2}{l^2} \sum_{n=1}^{\infty} n^2 C_n^2 \cos^2\left(\frac{n\pi ct}{l} + \alpha_n\right) \frac{l}{2}$

$$Sum = \frac{1}{4} \frac{m\pi^2 c^2}{l} \sum_{1}^{\infty} n^2 C_n^2 = constant = \bar{K.E} + \bar{P.E}$$

Forced Motion
$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial y}{\partial t^2} - f(x, t)T \tag{1}$$

f(x,t) = force / unit length at distance x, and time t.

Assume a simple harmonic forcing term $f(x,t) = F(x) \cos wt$.

We seek a solution of (1), simple harmonic with the same frequency. i.e. $y = Y(x) \cos wt$

By substitution we find that with $G(x) = -\frac{F(x)}{T}$

$$\frac{d^2Y}{dx^2} + \frac{w^2}{c^2}Y = G(x)$$
We must also have $Y(0) = 0 = Y(l)$ (3)

(2)

We seek a solution in which Y and Y' are continuous, and we shall assume that G(x) is continuous in $0 \le x \le l$.

[Note that the general solution of (1) is of the form $Y(x)\cos wt + z$, where z satisfies the homogeneous equation $\frac{\partial^2 z}{\partial x^2} = \frac{1}{c^2} \frac{\partial^z}{\partial t^2}$ this added term would be needed in general, in order that the initial conditions should be satisfied, since the particular solution $Y(x)\cos wt$, would not, in general, satisfy these.

Write
$$\lambda = \frac{w^2}{c^2}$$

$$\lambda_n = \left(\frac{n\pi}{l}\right)^2$$

$$\left[w_n = \frac{n\pi c}{l}, \text{ i.e } \lambda_n = \frac{wn^2}{c^2}\right]$$

Then (3) is

$$Y'' + \lambda Y = G(x)
 Y(0) = 0
 Y(l) = 0$$

$$(3a)$$

Write $u_n = \sin \frac{n\pi x}{l}$, so that

$$u_n'' + \lambda_n u_n = 0 (4)$$

From
$$(3a)u_n - (4)Y$$
 we get $u_nY'' - Yu_n'' + (\lambda - \lambda_n)Yu_n = Gu_n$

i.e.
$$\frac{d}{dx}(u_nY'-u_n'Y)+(\lambda-\lambda_n)u_nY=Gu_n$$

integrating from 0 to l, we have that

$$[u_n Y' - u'_n Y]_0^l + (\lambda - \lambda_n) \int_0^l u_n Y dx = \int_0^l u_n G dx$$

The evaluation of the first term is between the end limits only as Y, Y', u_n, u'_n are continuous in [0, l].]

$$u_n(0) = Y(0) = u_n(l) = Y(l) = 0 \text{ therefore } [u_n Y' - u_n' Y]_0^l = 0$$

Therefore $(\lambda - \lambda_n) \int_0^l u_n Y dx = \int_0^l u_n G dx$ (5)

Case I $\lambda \neq \lambda_n$ $(n = 1, 2, \cdots)$

i.e. λ_n is not an eigenvalue of the system

$$Y'' + \lambda Y = 0 \qquad Y(0) = 0 \qquad Y(l) = 0$$

$$\int_0^l u_n Y dx = \frac{1}{\lambda - \lambda_n} \int_0^l u_n G dx \qquad (6)$$

i.e. $Y_n = \frac{1}{\lambda - \lambda_n} G_n$ where Y_n and G_n are the Fourier sine coefficients for Yand G in [0, l].

Hence if
$$G(x) = \sum_{1}^{\infty} G_n \sin \frac{n\pi x}{l}$$

then
$$Y(x) = \sum_{1}^{\infty} \frac{G_n}{\lambda - \lambda_n} \sin \frac{n\pi x}{l} = \sum_{1}^{\infty} \frac{c^2 G_n}{w^2 - w_n^2} \sin \frac{n\pi x}{l}$$
 is (formally) a solu-

tion of the differential equation and the end conditions.

Note that if G(x) is continuous in $0 \le x \le l$ and G(0) = 0, G(l) = 0, then the coefficients are at most $O(\frac{1}{n^2})$ and the coefficients of Y(x) are at most $O(\frac{1}{n^4})$. Hence the series for Y(x) is certainly twice differentiable term-byterm since the derived series has coefficients of order $\frac{1}{n^2}$ and hence converges absolutely and uniformly.

Note that when w is near to w_m the dominant term in Y is then

$$\frac{c^2}{w^2 - w_m^2} G_m \sin \frac{n\pi x}{l} \text{ if } G_m \neq 0.$$

When $w = w_m$ the solution fails unless $G_m = 0$.

Case II
$$\lambda = \lambda_m$$
 i.e. $w = w_m$

From
$$\lambda - \lambda_n \int_0^l Y_{u_n} dx = \int_0^l G u_n dx$$

From
$$\lambda - \lambda_n \int_0^l Y_{u_n} dx = \int_0^l G u_n dx$$

We have $0 = \int_0^l G u_m dx = \frac{l}{2} G_m$

Therefore $G_m = 0$ is a necessary condition for the existence of a solution of the type $y = Y(x) \cos wt$.

If
$$G_m = 0$$
 $Y_n = \frac{1}{\lambda_m - \lambda_n} G_n$ $n \neq m$

Consider
$$Y(x) = \sum_{n=1, n \neq m}^{\infty} \frac{1}{\lambda_m - \lambda_n} G_n \sin \frac{n\pi x}{l}$$

By formal differentiation term by term

$$\left(\frac{d^2}{dx^2} + \lambda_m\right) Y = \sum_{n=1, n \neq m}^{\infty} G_n \sin \frac{n\pi x}{l} = G(x) \qquad \left(\frac{n^2 \pi^2}{l^2} = \lambda_n\right)$$

Since the series is the sine series for G(x) where there is no term in $\sin \frac{m\pi x}{l}$.

Hence the above expression for Y(x) is a solution, but is not unique since

$$Y(x) = \sum_{n=1, n \neq m}^{\infty} \frac{G_n}{\lambda_m - \lambda_n} \sin \frac{n\pi x}{l} + A \sin \frac{m\pi x}{l}$$

is also a solution.

[In case I the solution for Y is unique, for if Y_1 and Y_2 satisfy

$$Y'' + \lambda Y = G$$
, $Y(0) = Y(l) = 0$, then putting $Y_3 = Y_1 - Y_2$,

 $Y_3'' + \lambda Y = 0$, $Y_3(0) = Y_3(l) = 0$. This has a non trivial solution only if $\lambda = \lambda_n$ for some n, which is not so, i.e $Y_3 = 0$.

Summary

- i) $\lambda \neq \lambda_n$ for every n, the solution for Y exists and is unique.
- ii) $\lambda = \lambda_m$, no solution $y = Y \cos wt$ when $G_m \neq 0$. If $G_m = 0$ a solution exists but is not unique.

Case III
$$\lambda = \lambda_m$$
 $G_m \neq 0$
The solution $Y(x) = \sum_{1}^{\infty} \frac{G_n}{\lambda_n - \lambda_m} \sin \frac{n\pi x}{l}$ fails.

If $\lambda \neq \lambda_m$ for the moment,

$$y(x,t) = \left[\sum_{n=1, n \neq m}^{\infty} \frac{G_n}{\lambda - \lambda_m} \sin \frac{n\pi x}{l}\right] \cos wt + G_m \sin \frac{m\pi x}{l} \frac{\cos wt}{\lambda - \lambda_m}$$

Consider
$$y_1(x,t) = y(x,t) - G_m \sin \frac{m\pi x}{l} \frac{\cos w_m t}{\lambda - \lambda_m}$$

where the added term satisfies
$$\left(\frac{\partial^2}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) y = 0$$
 $y(0,t) = y(l,t) = 0$

and hence does not alter the forcing term $G(x)\cos wt$. Then

$$y_1(x,t) = \left[\sum_{n=1, n \neq m}^{\infty} \frac{G_n}{\lambda - \lambda_m} \sin \frac{n\pi x}{l} \right] \cos wt + G_m \sin \frac{m\pi x}{l} \frac{\cos wt - \cos w_m t}{\lambda - \lambda_m}$$

$$\cos wt - \cos w_m t = \partial_{t_m} (\cos wt - \cos w_m t) - \partial_{t_m} (\cos wt - \cos w$$

Now
$$\lim_{\lambda \to \lambda_m} \frac{\cos wt - \cos w_m t}{\lambda - \lambda_m} = \frac{\partial}{\partial \lambda} \frac{(\cos wt - \cos w_m t)_{\lambda = \lambda_m}}{l}$$

$$= -t \sin w_m t \left(\frac{dw}{d\lambda}\right)_{\lambda = \lambda_m}$$
but $\lambda = \frac{w^2}{c^2}$ therefore $\frac{2}{w_m} \left(\frac{dw}{d\lambda}\right)_{\lambda = \lambda_m} = \frac{1}{\lambda_m}$

but
$$\lambda = \frac{w^2}{c^2}$$
 therefore $\frac{2}{w_m} \left(\frac{dw}{d\lambda}\right)_{\lambda=\lambda} = \frac{1}{\lambda_m}$

Therefore the above limit is $-t\sin w_m t \frac{w_m}{2\lambda_m} = -\frac{(w_m t)\sin(w_m t)}{2\lambda_m}$

Hence the limiting form of $y_1(x,t)$ is

$$\left[\sum_{n=1, n\neq m}^{\infty} \frac{G_n}{\lambda - \lambda_m} \sin \frac{n\pi x}{l}\right] \cos w_m t - \frac{G_m}{2} \sin \frac{m\pi x}{l} \frac{w_m t \sin w_m t}{\lambda_m}$$

This shows the phenomenon of resonance since the second term has amplitude increasing with time (linearly).

Alternative method for solution of the non-homogeneous equation (in case $\lambda \neq \lambda_n$)

$$Y'' + \lambda Y = G(x)$$
 $0 \le x \le l$ $Y(0) = y(l) = 0$ (1)

Let u, v be solutions of the homogeneous equation

$$u'' + \lambda u = 0 \tag{2a}$$

$$v'' + \lambda v = 0 \tag{2b}$$

Choose u and v so that

$$u(0) = v(l) = 0 \tag{3}$$

In this case $u = \sin \lambda^{\frac{1}{2}}x$ $(\sin \frac{wx}{l})$ and $v = \sin \lambda^{\frac{1}{2}}(l-x)$ $(\sin \frac{w}{c}(l-x))$ From (1)u - (2a)Y we get uY'' - u''Y = uG

i.e.
$$\frac{d}{dx}(uY' - u'Y) = u(x)G(x)$$
 (4)

Similarly
$$(1)v - (2b)Y$$
 gives $\frac{d}{dx}(vY' - v'Y) = v(x)G(x)$ (5)
Finally $(2a)v - (2b)u$ gives $\frac{d}{dx}(vu' - uv') = 0$ (6)

Finally
$$(2a)v - (2b)u$$
 gives $\frac{d}{dx}(vu' - uv') = 0$ (6)

From (6) v(x)u'(x) - v'(x)u'(x) = const = v(0)u'(0)

$$= \lambda^{\frac{1}{2}} \sin \lambda^{\frac{1}{2}} l = \frac{w}{c} \sin \frac{wl}{c} = \Delta(\lambda) \tag{7}$$

Integrate (4) from 0 to

$$u(x)Y'(x) - u'(x)Y(x) = \int_0^x u(\zeta)G(\zeta)d\zeta \tag{8}$$

since u(0) = Y(0) = 0

Integrate (5) from l to x:

$$v(x)Y'(x) - v'(x)Y(x) = \int_{l}^{x} v(\zeta)G(\zeta)d\zeta \tag{9}$$

since v(l) = Y(l) = 0.

Equations (8) and (9) are linear equations in Y and Y'.

The determinant of the coefficients is

$$\begin{vmatrix} u(x) & -u'(x) \\ v(x) & -v'(x) \end{vmatrix} = u'(x)v(x) - v'(x)u(x) = \triangle(\lambda)$$
 from (7)

Hence (8) and (9) can be solved for Y and Y' (for any G(x)) if

 $\triangle(\lambda) \neq 0$, $\triangle = \lambda^{\frac{1}{2}} \sin \lambda^{\frac{1}{2}} l \neq 0$ as λ is not an eigenvalue.

Hence solving for Y(x)

(9)u - (8)v gives

$$\Delta(\lambda)Y(x) = u(x)\int_{l}^{x} v(\zeta)G(\zeta)d\zeta - v(x)\int_{0}^{x} u(\zeta)G(\zeta)d\zeta$$
 (10)

Similarly we have

$$\triangle(\lambda)Y'(x) = u'(x)\int_{l}^{x} v(\zeta)G(\zeta)d\zeta - v'(x)\int_{0}^{x} u(\zeta)G(\zeta)d\zeta \tag{10'}$$

[Note that (10') follows from differentiation of 10]

Differentiating (10') we find

$$\Delta(\lambda)Y''(x) = u''(x) \int_{l}^{x} v(\zeta)G(\zeta)d\zeta - v''(x) \int_{0}^{x} u(\zeta)G(\zeta)d\zeta + [u'(x)v(x) - v'(x)u(x)]G(x)$$

$$(10'')$$

Therefore
$$\triangle \lambda(Y'' + \lambda Y) = (u'' + \lambda u) \int_{l}^{x} -(v'' + \lambda v) \int_{0}^{x} + \triangle(\lambda)G(x)$$

= $\triangle(\lambda)G(x)$ as $u'' + \lambda u = v'' + \lambda v = 0$

Since $\triangle(\lambda) \neq 0$ $Y'' + \lambda Y = 0$.

We can write 10 as

$$\Delta(\lambda)Y(x) = -\int_0^l g(x,\zeta)G(\zeta)d\zeta \tag{10a}$$

$$g(x,\zeta) = \left\{ \begin{array}{ll} \frac{1}{\Delta(\lambda)} v(x) u(\zeta) & 0 \leq \zeta \leq x \\ \frac{1}{\Delta(\lambda)} v(\zeta) u(x) & x \leq \zeta \leq l \end{array} \right.$$

 $g(x,\zeta)$ is continuous in ζ at x.

 $\frac{\partial}{\partial \zeta}g(x,\zeta)$ is discontinuous at x.

$$\left[\frac{\partial}{\partial \zeta}(g(x,\zeta))\right]_{x=0}^{x+0} = \frac{1}{\Delta(\lambda)}[v'(\zeta)u(x) - v(x)u'(\zeta)]_{x=\zeta} = -1$$

$$\left(\frac{\partial 2}{\partial \zeta^2} + \lambda\right)g = 0 \text{ also } g(\zeta,x) = g(x,\zeta) \text{ since}$$

$$g(x,\zeta) = \frac{1}{\Delta \lambda} [v(\max(\zeta,x)) \cup (\min(x,\zeta))]$$

for
$$0 \le x \le l$$
, $0 \le \zeta \le l$, and $\max(x, \zeta) = \max(\zeta, x)$.