Application to Vibrating String

We have a uniform string of length [, mass per unit length m, and equilibrium
tension T'. Let there be a disturbing (transverse) force f(x,t) per unit length.
With the assumptions that

1) There are no longitudinal body forces (or negligible forces).

2) Displacement y(z,t) is purely transverse.
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3) %Y s small compared with 1.
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it can be shown that to the first order 7' is uniform along the string, and the

equation of motion is
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For free motion f = 0 and we have
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Seeking solutions of the form
y = X(z)Y(t)
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Hence both sides are constant and we write the constant as ——.
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This gives pra —w?Y

Y = Acoswt + bsinwt (3)

d’X w?

and W = —g (4)

X = Ccos 2o+ Dsin (4a)
c c



For fixed ends we require y(0,t) = y(l,t) =0

Therefore ?E?))::OO } (5)

The differential equation (4), and the conditions (5) constitute a two-point
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boundary problem. The differential equation includes a parameter A\ = —

c
not yet determined.

In fact e show bel(%w that A must have one of a set of values

s (2m)
A1 = l_27 >\2 = 12

These are the eigenvalues, the corresponding solutions X (z, \) are the eigen-
functions.
i.e. (4) and (5) constitute an eigenvalue problem.

X:C'cosgm—l—DsinEx
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The conditions (5) give C'= 0 and D sin )

c
Hence for a non-trivial solution sin — = 0, therefore w = ? n=12---

c
Hence solutions satisfying (5) are
t t
y = sin @ [An cos g + B, sin m;c ] (6)
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These are the normal modes of vibration and the values of o e oo
™

are the normal frequency.
Formally a general solution satisfying (2) and the end conditions (5) is
> nmx nmct nmct
Y= Zsin% {AncosﬂT + B,, sin 7; }
n=1
If this series converges and is twice differentiable term-by-term then the func-
tion y is a solution.

Given initial conditions
Suppose that y(z,0) =0 and y(z,0) = F(z) 0<z<]
Now a solution satisfying ¢(z,0) = 0 is
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y:ZAnsinTcos ; (1)
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when ¢ = 0 this gives y(z,0) = >_ A, sin -
1



> nmx
Hence Z A, sin e is the sine series expansion of F(z) in 0 < x <.

ie. A, =7 / x) sin wdm (2)

Interpretation of solutions in terms of progressive waves

1 [ee]
We have y = 52/1” [sin nTW(a: + ct) + sin nTw(x —ct)
1

Write Fi( ):ZAnSIH#
1
B F(z) 0<z<l
F5($)_{ —F(-z) —1<z<0

1
3 = S{Fl (@ +ct) + Fl(a —ct)}

Whenever ¢ = x+ct and nn = x — ct are such that F(z) is twice differentiable
at the values concerned.

Also y(2.0) = H{F.(2) + F(2)} = F(2)

y(0,1) = ? (Fi(z) odd)
y(l,y) = {F (l+ct)+ Fs(l —ct)}

= é{Fs(l +ct) + Fo(=[l+ct])} =0  (F periodic 2I).

Plucked String
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Therefore y(z,t) = a2l —a) 21: e cos —

Note that any normal mode which has a node at © = a is absent from the
nma
series since in that case sin % = 0 for all n.
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This occurs when — = rational — r < S.
s

. nma )
Then sin —— vanishes for n = s,2s,3s- - -.

The corresponding modes are absent.

Physical Illustration of Parseval’s Theorem
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The P.E of the element Ax is the work done by the tension at the ends in
extending the element from Ax to (AxQ + Ay2> 2

e to 8w (14 (22)7) = e (143 (22)7 )
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Therefore the extension is — (?) dx
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1 (dy\’
The work done is —T <8y> dz
x

Therefore the total work done is — / T <8y> dzx
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Yy = Z C,, sin mlrx cos (m;c + ozn)

0 > t
8_?2{ — 21: —? sin nlﬂ()’n sin (_m;c + an>
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a—z_ = 21: nl7r cos nlﬂC'n cos (m;c + an>
Applying Parseval’s formula
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f(x,t)= force / unit length at distance z, and time t¢.
Assume a simple harmonic forcing term f(z,t) = F(x) cos wt.
We seek a solution of (1), simple harmonic with the same frequency.

ie. y=Y(x)coswt (2)
L . F(z)
By substitution we find that with G(z) = — T
d*Y
el —Y G(x) (3)

We must also have Y (0) =0 =Y (l)



We seek a solution in which Y and Y’ are continuous, and we shall assume
that G(z) is continuous in 0 < x <.

[Note that the general solution of (1) is of the form Y (x)coswt + z, where
0? 1 07
z satisfies the homogeneous equation a—z = a2 this added term would
x c
be needed in general, in order that the initial conditions should be satisfied,

since the particular solution Y (z) cos wt, would not, in general, satisfy these.]
2

Write A\ = w_2
c
nm\ 2 nwe | wn?
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Then (3) is
Y'"+AY = G(z)

Y (0) = 0 (3a)

Y (1) = 0
Write u,, = sin ?, so that
ul 4+ Ay, =0 (4)

From (3a)u, — (4)Y we get

u,Y" = Yu!l + (A= \)Yu, = Gu,

ie. %(unY’ —uY)+ (A= \)u,Y = Guy,
integrating from 0 to [, we have that

.Y — YL+ (A — A) /0 Y dr — / Gz

0
[The evaluation of the first term is between the end limits only as Y, Y’ u,, u

are continuous in [0, ].]
u,(0) =Y (0) = u,(l) = Y(I) = 0 therefore [u,Y" —u Y], =0
I

1
Therefore (A — )\n)/ u,Y dx :/ u, Gdx (5)
0 0
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CaseIN#)\, (n=12--")
i.e. A, is not an eigenvalue of the system
Y'"+AY =0 Y(0)=0 Y()=0

! 1 1
/0 u,Ydr = )\_)\n/o u,Gdx (6)
ie. Y, = ﬁGn where Y,, and G,, are the Fourier sine coeflicients for Y
and G in [0,1]. '



nmx

Hence if G(x Z G, sin ——

o0

s Gn . nTr 3G, . nrr . ¢ " 1
;)\_)\nsm ;T2 wQ—wﬁsm ;s (formally) a solu-
tion of the differential equation and the end conditions.

[Note that if G(x) is continuous in 0 < x < [ and G(0) =0, G(I) =0, then
the coefficients are at most O(Z;) and the coefficients of Y (x) are at most
O(#) Hence the series for Y(x) is certainly twice differentiable term-by-
term since the derived series has coefficients of order -5 L and hence converges

absolutely and uniformly.]

then Y (z) =

Note that when w is near to w,, the dominant term in Y is then
2
nmwx

76' sin — if G,, # 0.
w? —w?, [
When w = w,, the solution fails unless G,, = 0.

Case II A =\, ie. w—wm
From A\ — )\, fo Yunax = fo Gundx

We have 0 = / Gu,dr = —G
Therefore G,,, = 0 is a necessary condition for the existence of a solution of
the type y = Y (x) cos wt.
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Consider Y (z) = Z @, sin nme
n=1,n#m )‘m - /\n )
By formal differentiation term by term
d? N n2n2

n=1,n#m
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Since the series is the sine series for G(z) where there is no term in sin

Hence the above expression for Y (z) is a solution, but is not unique since
> G nmx mmx
V()= > " sin + Asin
et Am — An l [
is also a solution.

[In case I the solution for Y is unique, for if Y; and Y; satisfy
Y"+AY =G, Y(0)=Y(l) =0, then putting Y3 = Y] — Vs,




Yy + Y =0, Y3(0) = Y3(I) = 0. This has a non trivial solution only if
A = A, for some n, which is not so, i.e Y3 = 0.]

Summary

i) A # A, for every n, the solution for Y exists and is unique.

ii) A = A, no solution y = Y cos wt when G,, # 0. If G,,, = 0 a solution
exists but is not unique.

Case III \ = )\, Gn #0

The solution Y (z) = >_,* X Gn/\ sin mlm fails.
1 n -~ \m
If A # )\, for the moment,
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I A=A

Consider y; (z,t) = y(x,t) — G, sin

where the added term satisfies

0? 1 02
— === |y=0 0,t) =y(l,t)=0
2oz Y y(0,t) = y(l,t)
and hence does not alter the forcing term G(z) coswt. Then
> G nwx mmx cos wt — cos Wyt
t) = s t+ Gy si m
y1(z, 1) L;;¢m . sin —— | cosw + G, sin 7 N
N 1 cos wt — €cos Wy, t 0 (cos wt — cos wmt),\:,\m
ow lim -
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but A = v therefore — @ = —
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Therefore the above limit is —¢ sin wmt;;\ = — (w )25)1\n(w )

Hence the limiting form of y; (z,t) is

[ > G, . nnx G, . mmx wy,tsinw,,t

Z )\_/\msm l]coswmt—Tsm ] N
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This shows the phenomenon of resonance since the second term has amplitude
increasing with time (linearly).

Alternative method for solution of the non-homogeneous equation
(in case A # \,)

YY"+ MY = G(x) 0<x<l Y(0)=y(l)=0 (1)
Let u, v be solutions of the homogeneous equation

u +Au=0 (2a)
v+ A =0 (2b)
Choose v and v so that

u(0) =v(l)=0 (3)

In this case u =sin A2z (sin %) and v =sin Az(l—xz) (sin 2l —x))
From (1)u — (2a)Y we get uY"” —u"Y = uG

ie. %(UY' —u'Y) = u(x)G(x) (4)
Similarly (1)v — (2b)Y gives %(UY’ —'Y) =v(2)G(x) (5)
Finally (2a)v — (2b)u gives %(vu —w') =0 (6)
From (6) v(z)u'(x) — v'(z)u(z) = const = v(0)u’(0)

= AZsin Azl = Esm—l =A(N\) (7)
Integrate (4) from 0 tg z

u(@)Y'(x) = @)Y (@) = [ u()G()dC 8)

since u(0) =Y (0) =0

Integrate (5) from [ to x:

V@)Y () = (@)Y (@) = [ v(OG(Q)dC (9)
since v(l) =Y (l) = 0.

Equations (8) and (9) are linear equations in Y and Y.

The determinant of the coefficients is

ZE;L;; _z,gg =/ (z)v(z) — ' (z)u(x) = A(N) from (7)
Hence (8) and (9) can be solved for Y and Y’ (for any G(x)) if
AN #0, A= AZ sin A2l # 0 as A is not an eigenvalue.
Hence solving for Y (z)

(9)u — (8)v gives i

AW () = u(a) [ oG — v(a) [ u(Q)G(C)de (10




Similarly we have

AOY(@) = (@) [ v(OG(QdC = v'(x) [ u(QG()dS (10"
[Note that (10') follows from differentiation of 10]

Differentiating (10") we find

AOY"(@) =" () [ (G ~v" (@) [ w6
+[u' (z)v(x) — v (x)u(r)]G(x) (10")
Therefore ANY" + AY) = (u" + M) [ —(v" + M) [§ +A(N)G(x)
= AN)G(x) asu”" + Adu=v"+ =0

Since A(X) #0 YY"+ Y =0.
We can write 10 as
BOY () = = [ 9(a,)C(0)d (100)

Amv@u(C) 0<¢<e
o(2.0) - | SvQula) @ <C <1
g(z, ) is continuous in ( at x.

%g(m ¢) is discontinuous at .

50| = g Oute) — (e (Oog = -1
<862 + A) g =0 also g(¢,z) = g(x, () since
r.€) = o [p(max((,2)) U (min(a, )]

for 0 <=z < l 0 < (¢ <, and max(z, () = max((, x).
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