Application to Vibrating String

We have a uniform string of length l, mass per unit length m, and equilibrium tension T. Let there be a disturbing (transverse) force $f(x, t)$ per unit length. With the assumptions that

1) There are no longitudinal body forces (or negligible forces).
2) Displacement $y(x, t)$ is purely transverse.
3) $\frac{\partial y}{\partial x}$ is small compared with 1 .
it can be shown that to the first order T is uniform along the string, and the equation of motion is
$\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{y}}{\partial t^{2}}-\frac{1}{T} f(x, t)$
when $c=\left(\frac{T}{m}\right)^{\frac{1}{2}}$
For free motion $f=0$ and we have
$\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} y}{\partial t^{2}}$
Seeking solutions of the form

$$
y=X(x) Y(t)
$$

$\frac{1}{X} \frac{\partial^{X}}{d x^{2}}=\frac{1}{c^{2}} \frac{1}{Y} \frac{d^{2} Y}{d t^{2}}$
Hence both sides are constant and we write the constant as $-\frac{w^{2}}{c^{2}}$.
This gives $\frac{d^{2} Y}{d t^{2}}=-w^{2} Y$
$Y=A \cos w t+b \sin w t$
and $\frac{d^{2} X}{d t^{2}}=-\frac{w^{2}}{c^{2}} X$
$X=C \cos \frac{w}{c} x+D \sin \frac{w}{c} x$

For fixed ends we require $y(0, t)=y(l, t)=0$
Therefore $\left.\begin{array}{l}X(0)=0 \\ X(l)=0\end{array}\right\}$
The differential equation (4), and the conditions (5) constitute a two-point boundary problem. The differential equation includes a parameter $\lambda=\frac{w^{2}}{c^{2}}$ not yet determined.
In fact we show below that λ must have one of a set of values
$\lambda_{1}=\frac{\pi^{2}}{l^{2}}, \quad \lambda_{2}=\frac{(2 \pi)^{2}}{l^{2}} \cdots$.
These are the eigenvalues, the corresponding solutions $X(x, \lambda)$ are the eigenfunctions.
i.e. (4) and (5) constitute an eigenvalue problem.
$X=C \cos \frac{w}{c} x+D \sin \frac{w}{c} x$
The conditions (5) give $C=0$ and $D \sin \frac{w l}{c}=0$
Hence for a non-trivial solution $\sin \frac{w l}{c}=0$, therefore $w=\frac{n \pi c}{l} \quad n=1,2 \ldots$
Hence solutions satisfying (5) are
$y=\sin \frac{n \pi x}{l}\left[A_{n} \cos \frac{n \pi c t}{l}+B_{n} \sin \frac{n \pi c t}{l}\right]$
These are the normal modes of vibration and the values of $\frac{w}{2 \pi}$, i.e. $\frac{c}{2 l}, \frac{2 c}{2 l} \ldots$ are the normal frequency.
Formally a general solution satisfying (2) and the end conditions (5) is $y=\sum_{n=1}^{\infty} \sin \frac{n \pi x}{l}\left[A_{n} \cos \frac{n \pi c t}{l}+B_{n} \sin \frac{n \pi c t}{l}\right]$
If this series converges and is twice differentiable term-by-term then the function y is a solution.

Given initial conditions

Suppose that $\dot{y}(x, 0)=0$ and $y(x, 0)=F(x) \quad 0 \leq x \leq l$
Now a solution satisfying $\dot{y}(x, 0)=0$ is
$y=\sum_{1}^{\infty} A_{n} \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l}$
when $t=0$ this gives $y(x, 0)=\sum_{1}^{\infty} A_{n} \sin \frac{n \pi x}{l}$.

Hence $\sum_{1}^{\infty} A_{n} \sin \frac{n \pi x}{l}$ is the sine series expansion of $F(x)$ in $0 \leq x \leq l$.
i.e. $A_{n}=\frac{2}{l} \int_{0}^{l} F(x) \sin \frac{n \pi x}{l} d x$

Interpretation of solutions in terms of progressive waves

We have $y=\frac{1}{2} \sum_{1}^{\infty} A_{n}\left[\sin \frac{n \pi}{l}(x+c t)+\sin \frac{n \pi}{l}(x-c t)\right]$
Write $F_{s}(x)=\sum_{1}^{\infty} A_{n} \sin \frac{n \pi x}{l}$
$F_{s}(x)=\left\{\begin{array}{cr}F(x) & 0 \leq x \leq l \\ -F(-x) & -l \leq x \leq 0\end{array}\right.$
$F_{s}(x+2 l)=F_{s}(x)$
$y=\frac{1}{2}\left\{F_{s}(x+c t)+F_{s}(x-c t)\right\}$
$\frac{\partial^{2} y}{\partial t^{2}}=\frac{1}{2}\left\{F_{s}^{\prime \prime}(x+c t)+F_{s}^{\prime \prime}(x-c t)\right\}$
$\frac{1}{c^{2}} \frac{\partial^{2} y}{\partial t^{2}}=\frac{1}{2}\left\{F_{s}^{\prime \prime}(x+c t)+F_{s}^{\prime \prime}(x-c t)\right\}$
Whenever $\zeta=x+c t$ and $\eta=x-c t$ are such that $F(x)$ is twice differentiable at the values concerned.
Also $y(x, 0)=\frac{1}{2}\left\{F_{s}(x)+F_{s}(x)\right\}=F(x)$

$$
\begin{aligned}
y(0, t) & =0 \quad\left(F_{s}(x) \text { odd }\right) \\
y(l, y) & =\frac{1}{2}\left\{F_{s}(l+c t)+F_{s}(l-c t)\right\} \\
& =\frac{1}{2}\left\{F_{s}(l+c t)+F_{s}(-[l+c t])\right\}=0 \quad(F \text { periodic } 2 l)
\end{aligned}
$$

Plucked String

$$
\begin{aligned}
F(x) & =\frac{h}{a} x & & 0 \leq x \leq a \\
& =\frac{h}{l-a}(l-x) & & a \leq x \leq l
\end{aligned}
$$

$$
\begin{aligned}
A_{n} & =\frac{2}{l} \int_{0}^{l} F(x) \sin \frac{n \pi x}{l} d x \\
& =\frac{2}{l}\left[-\frac{F(x)}{\frac{n \pi}{l}} \cos \frac{n \pi x}{l}\right]_{0}^{l}+\frac{2}{l} \int_{0}^{l} F^{\prime}(x) \frac{\cos \frac{n \pi x}{l}}{\frac{n \pi}{l}} d x \\
& =0+\frac{2}{l}\left[F^{\prime}(x) \frac{\sin \frac{n \pi x}{l}}{\left(\frac{n \pi}{l}\right)^{2}}\right]_{0}^{a}+\frac{2}{l}\left[F^{\prime}(x) \frac{\sin \frac{n \pi x}{l}}{\left(\frac{n \pi}{l}\right)^{2}}\right]_{a}^{l}-\int_{0}^{l} F^{\prime \prime}(x) \frac{\sin \frac{n \pi x}{l}}{\left(\frac{n \pi}{l}\right)^{2}} d x \\
& =\frac{2}{l} \frac{l^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi a}{l}\left[f^{\prime}(a-0)-f^{\prime}(a+0)\right] \quad \text { as } f^{\prime \prime} \equiv 0 \\
& =\frac{2 l}{n^{2} \pi^{2}} \sin \frac{n \pi a}{l}\left[\frac{h}{a}+\frac{h}{l-a}\right] \\
& =\frac{2 h l^{2}}{n^{2} \pi^{2} a(l-a)} \sin \frac{n \pi a}{l}
\end{aligned}
$$

Therefore $y(x, t)=\frac{2 l^{2} h}{\pi^{2} a^{2}(l-a)} \sum_{1}^{\infty} \frac{\sin \frac{n \pi x}{l} \sin \frac{n \pi a}{l}}{n^{2}} \cos \frac{n \pi c t}{l}$
Note that any normal mode which has a node at $x=a$ is absent from the series since in that case $\sin \frac{n \pi a}{l}=0$ for all n.
This occurs when $\frac{a}{l}=\operatorname{rational} \frac{r}{s} \quad r<s$.
Then $\sin \frac{n \pi a}{l}$ vanishes for $n=s, 2 s, 3 s \cdots$.
The corresponding modes are absent.

Physical Illustration of Parseval's Theorem

$$
K . E=\frac{1}{2} \int_{0}^{l} m\left(\frac{\partial y}{\partial t}\right)^{2} d x
$$

The P.E of the element Δx is the work done by the tension at the ends in extending the element from $\triangle x$ to $\left(\triangle x^{2}+\triangle y^{2}\right)^{\frac{1}{2}}$
i.e. to $\Delta x\left(1+\left(\frac{\Delta y}{\Delta x}\right)^{2}\right)^{\frac{1}{2}}=\triangle x\left(1+\frac{1}{2}\left(\frac{\Delta y}{\Delta x}\right)^{2}+\cdots\right)$

Therefore the extension is $\frac{1}{2}\left(\frac{\partial y}{\partial x}\right)^{2} d x$

The work done is $\frac{1}{2} T\left(\frac{\partial y}{\partial x}\right)^{2} d x$
Therefore the total work done is $\frac{1}{2} \int_{0}^{l} T\left(\frac{\partial y}{\partial x}\right)^{2} d x$
$y=\sum_{1}^{\infty} C_{n} \sin \frac{n \pi x}{l} \cos \left(\frac{n \pi c t}{l}+\alpha_{n}\right)$
$\frac{\partial y}{\partial t}=\sum_{1}^{\infty}-\frac{n \pi c}{l} \sin \frac{n \pi x}{l} C_{n} \sin \left(\frac{n \pi c t}{l}+\alpha_{n}\right)$
$\frac{\partial y}{\partial x}=\sum_{1}^{\infty} \frac{n \pi}{l} \cos \frac{n \pi x}{l} C_{n} \cos \left(\frac{n \pi c t}{l}+\alpha_{n}\right)$
Applying Parseval's formula

$$
\begin{aligned}
& \qquad \int_{0}^{l}\left(\frac{\partial y}{\partial t}\right)^{2} d x=\frac{\pi^{2} c^{2}}{l^{2}} \sum_{1}^{\infty} n^{2}\left(C_{n} \sin \left[\frac{n \pi c t}{l}+\alpha_{n}\right]\right)^{2} \frac{l}{2} \\
& \text { Hence } \quad \int_{0}^{l}\left(\frac{\partial y}{\partial t}\right)^{2} d x=\frac{\pi^{2}}{l^{2}} \sum_{1}^{\infty} n^{2}\left(C_{n} \cos \left[\frac{n \pi c t}{l}+\alpha_{n}\right]\right)^{2} \frac{l}{2} \\
& T=m c^{2} \text { so } P . E=\frac{1}{2} m \frac{\pi^{2} c^{2}}{l^{2}} \sum_{1}^{\infty} m \frac{\pi^{2} c^{2}}{l^{2}} n_{1}^{\infty} C_{n}^{2} \sin ^{2}\left(\frac{n \pi c t}{l}+\alpha_{n}\right) \frac{l}{2} \\
& \cos ^{2}\left(\frac{n \pi c t}{l}+\alpha_{n}\right) \frac{l}{2} \\
& \text { Sum }=\frac{1}{4} \frac{m \pi^{2} c^{2}}{l} \sum_{1}^{\infty} n^{2} C_{n}^{2}=\text { constant }=\overline{K . E}+\overline{P . E}
\end{aligned}
$$

Forced Motion

$\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial y}{\partial t^{2}}-f(x, t) T$
$f(x, t)=$ force $/$ unit length at distance x, and time t.
Assume a simple harmonic forcing term $f(x, t)=F(x) \cos w t$.
We seek a solution of (1), simple harmonic with the same frequency.
i.e. $y=Y(x) \cos w t$

By substitution we find that with $G(x)=-\frac{F(x)}{T}$
$\frac{d^{2} Y}{d x^{2}}+\frac{w^{2}}{c^{2}} Y=G(x)$
$\stackrel{d x^{2}}{c^{2}}$ We must also have $\left.Y(0)=0=Y(l)\right\}$

We seek a solution in which Y and Y^{\prime} are continuous, and we shall assume that $G(x)$ is continuous in $0 \leq x \leq l$.
[Note that the general solution of (1) is of the form $Y(x) \cos w t+z$, where z satisfies the homogeneous equation $\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{z}}{\partial t^{2}}$ this added term would be needed in general, in order that the initial conditions should be satisfied, since the particular solution $Y(x) \cos w t$, would not, in general, satisfy these.]
Write $\lambda=\frac{w^{2}}{c^{2}}$
$\lambda_{n}=\left(\frac{n \pi}{l}\right)^{2}$

$$
\left[w_{n}=\frac{n \pi c}{l} \text {, i.e } \lambda_{n}=\frac{w n^{2}}{c^{2}}\right]
$$

Then (3) is

$$
\left.\begin{array}{ccc}
Y^{\prime \prime}+\lambda Y & = & G(x) \\
Y(0) & = & 0 \tag{3a}\\
Y(l) & = & 0
\end{array}\right\}
$$

Write $u_{n}=\sin \frac{n \pi x}{l}$, so that
$u_{n}^{\prime \prime}+\lambda_{n} u_{n}=0$
From (3a) $u_{n}-(4) Y$ we get
$u_{n} Y^{\prime \prime}-Y u_{n}^{\prime \prime}+\left(\lambda-\lambda_{n}\right) Y u_{n}=G u_{n}$
i.e. $\frac{d}{d x}\left(u_{n} Y^{\prime}-u_{n}^{\prime} Y\right)+\left(\lambda-\lambda_{n}\right) u_{n} Y=G u_{n}$
integrating from 0 to l, we have that
$\left[u_{n} Y^{\prime}-u_{n}^{\prime} Y\right]_{0}^{l}+\left(\lambda-\lambda_{n}\right) \int_{0}^{l} u_{n} Y d x=\int_{0}^{l} u_{n} G d x$
[The evaluation of the first term is between the end limits only as $Y, Y^{\prime}, u_{n}, u_{n}^{\prime}$ are continuous in $[0, l]$.]
$u_{n}(0)=Y(0)=u_{n}(l)=Y(l)=0$ therefore $\left[u_{n} Y^{\prime}-u_{n}^{\prime} Y\right]_{0}^{l}=0$
Therefore $\left(\lambda-\lambda_{n}\right) \int_{0}^{l} u_{n} Y d x=\int_{0}^{l} u_{n} G d x$
Case I $\lambda \neq \lambda_{n} \quad(n=1,2, \cdots)$
i.e. λ_{n} is not an eigenvalue of the system
$Y^{\prime \prime}+\lambda Y=0 \quad Y(0)=0 \quad Y(l)=0$
$\int_{0}^{l} u_{n} Y d x=\frac{1}{\lambda-\lambda_{n}} \int_{0}^{l} u_{n} G d x$
i.e. $Y_{n}=\frac{1}{\lambda-\lambda_{n}} G_{n}$ where Y_{n} and G_{n} are the Fourier sine coefficients for Y and G in $[0, l]$.

Hence if $G(x)=\sum_{1}^{\infty} G_{n} \sin \frac{n \pi x}{l}$
then $Y(x)=\sum_{1}^{\infty} \frac{G_{n}}{\lambda-\lambda_{n}} \sin \frac{n \pi x}{l}=\sum_{1}^{\infty} \frac{c^{2} G_{n}}{w^{2}-w_{n}^{2}} \sin \frac{n \pi x}{l}$ is (formally) a solution of the differential equation and the end conditions.
[Note that if $G(x)$ is continuous in $0 \leq x \leq l$ and $G(0)=0, G(l)=0$, then the coefficients are at most $O\left(\frac{1}{n^{2}}\right)$ and the coefficients of $Y(x)$ are at most $O\left(\frac{1}{n^{4}}\right)$. Hence the series for $Y(x)$ is certainly twice differentiable term-byterm since the derived series has coefficients of order $\frac{1}{n^{2}}$ and hence converges absolutely and uniformly.]

Note that when w is near to w_{m} the dominant term in Y is then
$\frac{c^{2}}{w^{2}-w_{m}^{2}} G_{m} \sin \frac{n \pi x}{l}$ if $G_{m} \neq 0$.
When $\underset{w}{m}=w_{m}$ the solution fails unless $G_{m}=0$.
Case II $\lambda=\lambda_{m} \quad$ i.e. $w=w_{m}$
From $\lambda-\lambda_{n} \int_{0}^{l} Y_{u_{n}} a x=\int_{0}^{l} G u_{n} d x$
We have $0=\int_{0}^{l} G u_{m} d x=\frac{l}{2} G_{m}$
Therefore $G_{m}=0$ is a necessary condition for the existence of a solution of the type $y=Y(x) \cos w t$.
If $G_{m}=0 \quad Y_{n}=\frac{1}{\lambda_{m}-\lambda_{n}} G_{n} \quad n \neq m$
Consider $Y(x)=\sum_{n=1, n \neq m}^{\infty} \frac{1}{\lambda_{m}-\lambda_{n}} G_{n} \sin \frac{n \pi x}{l}$
By formal differentiation term by term

$$
\left(\frac{d^{2}}{d x^{2}}+\lambda_{m}\right) Y=\sum_{n=1, n \neq m}^{\infty} G_{n} \sin \frac{n \pi x}{l}=G(x) \quad\left(\frac{n^{2} \pi^{2}}{l^{2}}=\lambda_{n}\right)
$$

Since the series is the sine series for $G(x)$ where there is no term in $\sin \frac{m \pi x}{l}$.
Hence the above expression for $Y(x)$ is a solution, but is not unique since
$Y(x)=\sum_{n=1, n \neq m}^{\infty} \frac{G_{n}}{\lambda_{m}-\lambda_{n}} \sin \frac{n \pi x}{l}+A \sin \frac{m \pi x}{l}$
is also a solution.
[In case I the solution for Y is unique, for if Y_{1} and Y_{2} satisfy $Y^{\prime \prime}+\lambda Y=G, \quad Y(0)=Y(l)=0$, then putting $Y_{3}=Y_{1}-Y_{2}$,
$Y_{3}^{\prime \prime}+\lambda Y=0, \quad Y_{3}(0)=Y_{3}(l)=0$. This has a non trivial solution only if $\lambda=\lambda_{n}$ for some n, which is not so, i.e $Y_{3}=0$.]

Summary

i) $\lambda \neq \lambda_{n}$ for every n, the solution for Y exists and is unique.
ii) $\lambda=\lambda_{m}$, no solution $y=Y \cos w t$ when $G_{m} \neq 0$. If $G_{m}=0$ a solution exists but is not unique.

Case III $\lambda=\lambda_{m} \quad G_{m} \neq 0$
The solution $Y(x)=\sum_{1},{ }^{\infty} \frac{G_{n}}{\lambda_{n}-\lambda_{m}} \sin \frac{n \pi x}{l}$ fails.
If $\lambda \neq \lambda_{m}$ for the moment,
$y(x, t)=\left[\sum_{n=1, n \neq m}^{\infty} \frac{G_{n}}{\lambda-\lambda_{m}} \sin \frac{n \pi x}{l}\right] \cos w t+G_{m} \sin \frac{m \pi x}{l} \frac{\cos w t}{\lambda-\lambda_{m}}$
Consider $y_{1}(x, t)=y(x, t)-G_{m} \sin \frac{m \pi x}{l} \frac{\cos w_{m} t}{\lambda-\lambda_{m}}$
where the added term satisfies
$\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) y=0 \quad y(0, t)=y(l, t)=0$
and hence does not alter the forcing term $G(x) \cos w t$. Then
$y_{1}(x, t)=\left[\sum_{n=1, n \neq m}^{\infty} \frac{G_{n}}{\lambda-\lambda_{m}} \sin \frac{n \pi x}{l}\right] \cos w t+G_{m} \sin \frac{m \pi x}{l} \frac{\cos w t-\cos w_{m} t}{\lambda-\lambda_{m}}$
Now $\lim _{\lambda \rightarrow \lambda_{m}} \frac{\cos w t-\cos w_{m} t}{\lambda-\lambda_{m}}=\frac{\partial}{\partial \lambda} \frac{\left(\cos w t-\cos w_{m} t\right)_{\lambda=\lambda_{m}}}{l}$
$=-t \sin w_{m} t\left(\frac{d w}{d \lambda}\right)_{\lambda=\lambda_{m}}$
but $\lambda=\frac{w^{2}}{c^{2}} \quad$ therefore $\quad \frac{2}{w_{m}}\left(\frac{d w}{d \lambda}\right)_{\lambda=\lambda_{m}}=\frac{1}{\lambda_{m}}$
Therefore the above limit is $-t \sin w_{m} t \frac{w_{m}}{2 \lambda_{m}}=-\frac{\left(w_{m} t\right) \sin \left(w_{m} t\right)}{2 \lambda_{m}}$
Hence the limiting form of $y_{1}(x, t)$ is

$$
\left[\sum_{n=1, n \neq m}^{\infty} \frac{G_{n}}{\lambda-\lambda_{m}} \sin \frac{n \pi x}{l}\right] \cos w_{m} t-\frac{G_{m}}{2} \sin \frac{m \pi x}{l} \frac{w_{m} t \sin w_{m} t}{\lambda_{m}}
$$

This shows the phenomenon of resonance since the second term has amplitude increasing with time (linearly).

Alternative method for solution of the non-homogeneous equation (in case $\lambda \neq \lambda_{n}$)
$Y^{\prime \prime}+\lambda Y=G(x) \quad 0 \leq x \leq l \quad Y(0)=y(l)=0$
Let u, v be solutions of the homogeneous equation
$u^{\prime \prime}+\lambda u=0$
$v^{\prime \prime}+\lambda v=0$
Choose u and v so that

$$
\begin{equation*}
u(0)=v(l)=0 \tag{2b}
\end{equation*}
$$

In this case $u=\sin \lambda^{\frac{1}{2}} x \quad\left(\sin \frac{w x}{l}\right) \quad$ and $\quad v=\sin \lambda^{\frac{1}{2}}(l-x) \quad\left(\sin \frac{w}{c}(l-x)\right)$
From (1) $u-(2 a) Y$ we get $u Y^{\prime \prime}-u^{\prime \prime} Y=u G$
i.e. $\frac{d}{d x}\left(u Y^{\prime}-u^{\prime} Y\right)=u(x) G(x)$

Similarly (1) $v-(2 b) Y$ gives $\frac{d}{d x}\left(v Y^{\prime}-v^{\prime} Y\right)=v(x) G(x)$
Finally $(2 a) v-(2 b) u$ gives $\frac{d}{d x}\left(v u^{\prime}-u v^{\prime}\right)=0$
From (6) $v(x) u^{\prime}(x)-v^{\prime}(x) u(x)=\mathrm{const}=v(0) u^{\prime}(0)$
$=\lambda^{\frac{1}{2}} \sin \lambda^{\frac{1}{2}} l=\frac{w}{c} \sin \frac{w l}{c}=\triangle(\lambda)$
Integrate (4) from 0 to x :
$u(x) Y^{\prime}(x)-u^{\prime}(x) Y(x)=\int_{0}^{x} u(\zeta) G(\zeta) d \zeta$
since $u(0)=Y(0)=0$
Integrate (5) from l to x :
$v(x) Y^{\prime}(x)-v^{\prime}(x) Y(x)=\int_{l}^{x} v(\zeta) G(\zeta) d \zeta$
since $v(l)=Y(l)=0$.
Equations (8) and (9) are linear equations in Y and Y^{\prime}.
The determinant of the coefficients is
$\left|\begin{array}{ll}u(x) & -u^{\prime}(x) \\ v(x) & -v^{\prime}(x)\end{array}\right|=u^{\prime}(x) v(x)-v^{\prime}(x) u(x)=\triangle(\lambda)$
Hence (8) and (9) can be solved for Y and Y^{\prime} (for any $G(x)$) if $\triangle(\lambda) \neq 0, \quad \triangle=\lambda^{\frac{1}{2}} \sin \lambda^{\frac{1}{2}} l \neq 0$ as λ is not an eigenvalue.
Hence solving for $Y(x)$
(9) $u-(8) v$ gives
$\triangle(\lambda) Y(x)=u(x) \int_{l}^{x} v(\zeta) G(\zeta) d \zeta-v(x) \int_{0}^{x} u(\zeta) G(\zeta) d \zeta$

Similarly we have
$\triangle(\lambda) Y^{\prime}(x)=u^{\prime}(x) \int_{l}^{x} v(\zeta) G(\zeta) d \zeta-v^{\prime}(x) \int_{0}^{x} u(\zeta) G(\zeta) d \zeta$
[Note that (10') follows from differentiation of 10]
Differentiating (10') we find
$\triangle(\lambda) Y^{\prime \prime}(x)=u^{\prime \prime}(x) \int_{l}^{x} v(\zeta) G(\zeta) d \zeta-v^{\prime \prime}(x) \int_{0}^{x} u(\zeta) G(\zeta) d \zeta$

$$
+\left[u^{\prime}(x) v(x)-v^{\prime}(x) u(x)\right] G(x)
$$

Therefore $\triangle \lambda\left(Y^{\prime \prime}+\lambda Y\right)=\left(u^{\prime \prime}+\lambda u\right) \int_{l}^{x}-\left(v^{\prime \prime}+\lambda v\right) \int_{0}^{x}+\triangle(\lambda) G(x)$

$$
=\triangle(\lambda) G(x) \text { as } u^{\prime \prime}+\lambda u=v^{\prime \prime}+\lambda v=0
$$

Since $\triangle(\lambda) \neq 0 \quad Y^{\prime \prime}+\lambda Y=0$.
We can write 10 as
$\triangle(\lambda) Y(x)=-\int_{0}^{l} g(x, \zeta) G(\zeta) d \zeta$
$g(x, \zeta)= \begin{cases}\frac{1}{\Delta(\lambda)} v(x) u(\zeta) & 0 \leq \zeta \leq x \\ \frac{1}{\Delta(\lambda)} v(\zeta) u(x) & x \leq \zeta \leq l\end{cases}$
$g(x, \zeta)$ is continuous in ζ at x.
$\frac{\partial}{\partial \zeta} g(x, \zeta)$ is discontinuous at x.
$\left[\frac{\partial}{\partial \zeta}(g(x, \zeta))\right]_{x-0}^{x+0}=\frac{1}{\triangle(\lambda)}\left[v^{\prime}(\zeta) u(x)-v(x) u^{\prime}(\zeta)\right]_{x=\zeta}=-1$
$\left(\frac{\partial 2}{\partial \zeta^{2}}+\lambda\right) g=0$ also $g(\zeta, x)=g(x, \zeta)$ since
$g(x, \zeta)=\frac{1}{\triangle \lambda}[v(\max (\zeta, x)) \cup(\min (x, \zeta))]$
for $0 \leq x \leq l, \quad 0 \leq \zeta \leq l$, and $\max (x, \zeta)=\max (\zeta, x)$.

